Subject Index

A–B

Area ratio, 15
ASTM Committee D-18, 1
ASTM standards
 C 403: 229
 D 653: 166
 D 2573: 1, 5, 8, 52, 106, 183, 321, 335, 341
 D 4698: 1
Atterberg limits, 267
Autonomous Seafloor Strength Profiler, 354
Blast-furnace slag, 220

C

Cements, marine clay improved, 220
Centrifuge tests, 209
Clays (See also Marine sediments; Testing)
 anisotropy, 30–32, 82, 88, 166, 267
 carbonate, 339
 dynamic moduli, 193
 elliptical failure criterion, 88
 Gault, 212
 geotechnical data, table, 76
 liquidity index, 293
 minerals, 220
 model, physical, 209
 overconsolidation, 33–38, 71, 306
 plasticity, 13, 150, 293, 339
 remolding, 166
 sensitivity, 117, 166, 233
 shear rate, 46, 117
 shear strength, undrained (See Shear strength)
 shear stress distributions, 15
 static moduli, 193
 strain softening, 150
 strength anisotropy, undrained, 30–32, 82, 88, 166, 267
 strength relationships, vane and compressive, 32–36
 stress, effective, 131
 stresses, horizontal, 71
 stresses, yield, 27, 71
Cone penetration tests
 Autonomous Seafloor Strength Profiler, 354
 during centrifuge flight, 209
 comparison with other methods, 247, 293, 306, 339
 relative preference for, 56
 Constitutive equation, 131
 Core tests, 354
 Cylinder shear testing, 131

D

Deep mixing method, 220
Dilatometers, 247
Drilling, offshore, 46, 220, 318, 339
Dynamic moduli, 193

E–F

Elliptical failure criterion, 88
Failure, progressive, 150
Field vane testing (See also Testing)
 comparison with laboratory results, 233, 293, 306
 comparison with other in-situ results, 247, 293, 306, 354
 corrections, 242–243
 design and experience with a commercial unit, 318, 339
 friction errors, 104
 future research and development recommendations, table, 7
 installation methods, 104
 instrumentation, 318
 overview, 1
Fills, test, 267
Finite-element analysis, 150
Foundations, 277
Friction errors, 104
I-L

Insertion effects, 18–21, 54, 117
Lateral stress at rest, coefficient of, 339
Lime reaction capacity, 220
Liquidity index, 293

M

Marine sediments (See also Clays; Shear strength)
anisotropy, 30–32, 82, 88, 166, 267
Bombay, 277
Hiroshima Bay, 220
James Bay, Quebec, 233
Mexico, Gulf of, 166, 293
Mississippi Fan, 166
Osaka Bay, 131, 220
Pacific, North, 166, 361
Rhode Island Sound, 362
Rio de Janeiro soft, 104
Santa Barbara Channel, 306
sensitivity, 117, 166
Sepetiba, Brazil, 267
Tokyo Bay, 220
Minerals, clay, 220
Mixing, deep, 220

O

Ocean-bottom testing (See Testing; Marine sediments)
Ocean soil (See Clays; Marine sediments)
Offshore drilling, 46, 220, 318, 339
Overburden, 306
Overconsolidation, 33–38, 71, 306

P

Penetrometers, cone
Autonomous Seafloor Strength Profiler, 354
centrifuge flight, use during, 209
comparison with other methods, 247, 293, 306, 339
relative preference for, 56
Perimeter ratio, 18
Piezocone tests, 247, 293
Plasticity, 13, 150, 293, 339
Portland cement, 220
Preconsolidation pressure, 306
Pressuremeters, 247
Progressive failure, 150

R

Rest period, 13, 15
Rod-soil friction, 104
Rotation rates, 13, 53, 117

S

Screw-plate apparatus, 247
Sensitivity of clays, 117, 166, 233
SHANSEP (stress history and normalized soil engineering properties)
correlation with other methods, 196, 293, 306
definition, 33
usage, 56
Shear rate, 46, 117
Shear strength (See also Testing)
cement, marine clay improved, 220
undrained clay
anisotropy, 30–32, 82, 88, 166, 267
Autonomous Seafloor Strength Profiler, 354
during centrifuge flight, 209
low strain, 193
measurement factors, 13, 117
micromorphological aspects, 182
offshore, 46
residual/remolded, 166
Skempton relationship, 348
stresses, in-situ and yield, 71, 267
vane and field strengths, correlation of, 82–85

Shear stresses
clays
distributions in, 15
effective, 131
horizontal, 71
yield, 27, 71
vanes, rectangular, distributions in, table, 90

Shear testing (See Testing)
Silt (See Clays; Marine sediments)
Site investigation, 293
Slag, blast furnace, 220
Sliding block analysis method, 277
Soil stabilization, 220
Soils (See also Clays)
carbonate, 339
instrumentation (See Test apparatus; Vane types)
mechanics, 13, 150
progressive failure, 150
properties, 46, 306
Stability analysis (See Testing)
Stabilization, soil, 220
Standards
ASTM C 403: 229
ASTM D 653: 166
ASTM D 2573: 1, 5, 8, 52, 106, 183, 321, 335, 341
ASTM D 4698: 1
national standards, comparison of, table, 319
offshore application of onshore test standards, 318
standard field vane test, 14
Static moduli, 193
Strain-rate effects, 13, 53, 117
Strain softening, 150
Stresses
effective, 131
horizontal, 71
lateral, at rest, coefficient of, 339
yield, 27, 71

T
Test apparatus (See also Vane types)
Autonomous Seafloor Strength Profiler, 354
commercial in-situ vane, 318
cylinder shear, 131
dilatometers, 247
deep mixing cement, 220
dilatometers, 247
field vane, 104
offshore vane, 46
penetrometers, cone (See Penetrometers, cone)
pressuremeters, 247
screw-plate, 247
Test fills, 267
Testing (See also Shear strength)
calibration, 104
cement, marine clay improved, 220
centrifuge, 209
core, 354
correlation factors, 71, 104
design criteria, 46
field and laboratory tests, comparisons, 117, 233, 293, 306
friction errors, 104
future research and development
recommendations, table, 7
history, 46, 182
in-situ and core, comparison of results, 354
in-situ methods rated, table, 248
insertion effects, 18–21, 54, 117
installation methods, 104
laboratory (See also Triaxial testing)
ASTM D 4698: 1
effective stress, 131
micromorphological aspects, 182
land
ASTM D 2573: 1, 5, 8, 52, 106, 321, 341
miniature vane, 209, 293, 306
offshore, 46, 220, 318, 339
overview, 1
penetration
cone (See Cone penetration tests)
ASTM C 403: 229
piezocone, 247, 293
questionnaire, 46
remolding, 166
reviews, 13, 46
SHANSEP (stress history and normalized soil engineering properties), 33, 56, 196, 293, 306
shear, cylinder, 131
standardization
ASTM D 2573: 1, 5, 8, 52, 106, 183, 321, 335, 341
ASTM D 4698: 1
national standards, comparison of, table, 319
offshore application of onshore test standards, 318
recommendations, table, 6
standard field vane test, 14
Torvane, 339
triaxial (See Triaxial testing)
vane and field strengths, correlation, 82–85, 288
vane results compared with other in-situ results, 247
Torvane, 339
Triaxial testing
on anisotropically reconsolidated specimens, 233
correlation with other methods, 293, 306, 339
with cyclic loading, 193
reliability of, 277

V
Vane borer, 104, 277
Vane insertion effects, 18–21, 54, 117
Vane rotation rates, 13, 53, 117
Vane strength, 117
Vane types
 diamond shaped, 88
 Dolphin, 51
 friction eliminator, 106
 Fugro, 50, 318, 339
 McClelland, 50
 miniature, 209, 293, 306
 rectangular, 88

shape effects, 88, 117
standard, 14
triaxial, 193, 280, 293, 306, 339
vane borer, 104, 277

Y

Yield stresses, 27, 71