Subject Index

A
Ab-initio calculations, 811, 863
Adjacent effects, 584
Alloying additions, minor, 297
Alloying elements, 59, 135
Analytical electron microscopy, 400
Annealing, 637, 720, 811
Auto-wave, 427

B
β-particles, 584
β-phase, 507
β quenching, 247
Biaxial strength, 449
Boiling water reactor, 33, 80, 96, 119, 247, 583, 617
Boron, 169
Burn-ups, 119, 743, 774

C
Calandria tubes, 3, 449
CANDU reactor, 3, 247, 297, 313, 449, 507, 796
Characterization, 313
Chemical analysis, 796
Chemical composition, 837
Cladding materials, 80, 96, 169, 222, 361, 490, 743
Cladding tubes, 427, 673, 702, 720
Cold-work, 449
Composition, 362, 758
Contact conductance, 3
Correlation, 507
Corrosion, 20, 33, 80, 96, 119, 135, 170, 222, 247, 274, 297, 313, 471, 524, 583, 743, 780
Corrosion resistance, 154, 490
Crack arrest, 339
Crack initiation, 339
Crack propagation, 384
Cracking, long axial, 616
CRACLE, 3
Creep, 658, 674, 721, 743, 780, 796, 837, 863
Creep rupture, 658
Crystallographic texture, 449
<c>-type dislocations, 561
CWSR, 811

D
Deformation, 384, 796
Deformation mechanisms, 863
Delayed hydride cracking, 339, 507
Deuterium pickup, 247, 297, 313
Diametral deformation, 796
Dilute zirconium alloys, 490
Dislocation channeling, 384
Dislocation density, 507
Dislocation structure, 758, 811, 863
Dry-out, 637

E
Electric field, 584
Electrochemical impedance spectroscopy, 33
Electrochemistry, 33, 222
Electron energy levels, 223
Electron microscopy, 313, 758
Elongation, 507
Embrittlement, 637
Enhanced spacer shadow corrosion, 584
E635 type alloy, 758
Extrusion billet, 247

F
Fabrication, 119
Fluence, 758
Flux, 796
Fracture strain, 702
Fuel assemblies, 471
Fuel channel, 584
Fuel cladding, 3, 561, 617, 637, 743, 780
Zr-lined, 616
Fuel rods, 80, 524
 defective, 617
pre-irradiated, 637
Fuel swelling test, 3
G

Grain size, 33, 796
Grid cell dimensional stability, 490
Grids, 471
Guide thimble tubes, 471

H

Habit plane, 561
Hardening, 811, 863
Heat flux, 170
Heat sink, 3
Heat treatment, 154
High-temperature water, 20
Hydride cracking, delayed, 339
Hydride rim, 702
Hydrides, 274, 471, 561, 721, 811
Hydriding, 33, 96, 616
Hydrogen, 339, 811
Hydrogen effect, 190, 471, 674
Hydrogen pickup, 222, 297, 313, 490

I

Impurities, 297
Inconel, 584
In-pile loop tests, 169
In reactor corrosion, 119, 584
In-reactor performance, 471, 490, 507, 617, 743, 796
In-situ clad straining, 524
Intermetallic compound, 33
Intermetallic precipitates, 80, 361
Interplanar spacing, 274
Iron, chemical state, 135, 154
Irradiation, 20, 170, 190, 247, 339, 384, 400, 561, 583, 637, 743, 780, 837
 chemical composition and, 758
growth, 471, 490, 743, 796
Irradiation defects, 721
Irradiation-induced dissolution, 96

L

Lattice coherency, 274
Leak-before-break, 3
Line broadening, 274, 507
Lithiated water, 222, 471
Lithium, 170
LOCA, 656, 674
Low temperature process, 80, 119
Light water reactors, 637, 702

M

M4, 674, 837
M5, 674, 837
Mechanical behavior, 673, 863
Mechanical properties, 507, 637, 702
Metal-oxide interface, 190
Microchemistry, 313
Microstructure, 247, 313, 362, 400, 507, 637, 658, 721, 796
 chemical composition and, 758
Mössbauer spectroscopy, 135, 154

N

Neutron irradiation, 80, 400, 490, 507, 796
β-Niobium, 190
Nodular corrosion, 80
Nuclear application, 80

O

Out-of-pile loop tests, 169
Oxidation, 190, 297, 584
 rate, 96
Oxide film, 135
Oxide microstructure, 313
Oxygen, 796, 863

P

Palladium, 222
Pellet-cladding interaction, 837
α/β Phase transformation, 362, 658, 674
Plastic deformation, 427
Plasticity, 863
Power ramp, 3
Power transient, 837
Precipitate(s), 33, 80, 758, 811
 type, 80
 size, 80
 distribution, 80
dissolution, 80
Predictive models, 796
Pressure tubes, 3, 247, 297, 313, 449, 507, 796, 837
Pressurized water reactor, 169, 190, 361, 490, 524, 658, 743, 780, 837

R

Radiation, 507, 780
Rate theory, 796
Reactivity-initiated accident, 702
Reduction reaction, 223
Residual stress, 427
Response surface analysis, 297
Ring stretch specimens, 702
Roll-extrusion, 449

Secondary degradation, 617
Second phase particles, 33, 59, 80, 96, 119, 361, 400, 490
Shadow corrosion, 119, 584
Simulation, 3
Soak time, 247
Softening, 811
Spent-fuel cladding, 561
Stacking fault, 811
Stainless steel, 584
Statistical analysis, 796
Storage, interim, 721
Strain, 811, 863
Strain softening, 384
Stress, 702, 811
Sulfur, 863
Surface modification, 3
Synchrotron radiation, 59

Temperature, 247, 796, 811, 863
 critical, 339
Tensile strength, 507
Terminal solid solubility, 339
Texture, 561, 796
Thermal behavior, 673
Thermal creep, 720, 743, 837
Thermal-hydraulic transients, 637
Thermoccale, 362
Thermodynamic calculations, 362
Thermodynamics, 361
Tin, 222
 chemical state, 135, 154
Tin content, 743
Transmission electron microscopy, 561
Tube reduction, 449

U
Uniform corrosion, 80

V
Viscoplasticity, 811
Void fraction, 170

X
X-ray diffraction, 507, 796

Y
Yield stress, 507

Z
Zirco, 96, 524, 658
Zircaloy-2, 119, 222, 339, 449, 584, 617
Zircaloy-4, 170, 384, 400, 720, 780, 837
 chemical state, 135, 154
dimensional stability, 471
embrittlement, 702
high burnup applications, 119
low-tin, 490
oxide scales, 190
PWR-type conditions, 169
Thermal-mechanical behavior, 674
Viscoplasticity, 811
Zirconia, 135
α-Zirconium, 863
Zirconium alloys, 3, 20, 33, 59, 80, 119,
 135, 362, 384, 427, 507, 584, 658,
 674, 743, 758, 780, 796, 837
ZIRLO, 471, 780
Zr-1%Nb, 427
Zr-2.5Nb, 247, 274, 297, 313, 507, 796
Zr-Nb-Fe(O,Sn) system, 361
ZrNbO alloys, 190, 674, 837, 863
ZrNbSnFe alloys, 758
Zr-Sn-Fe alloy, 119
ZrSnFeV alloys, 673, 837
Zr-Sn-Nb alloy, 119
ZrSnNbFeCrV alloys, 743