Subject Index

A

<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjusted compliance ratio</td>
<td>388</td>
</tr>
<tr>
<td>Aluminum</td>
<td>85</td>
</tr>
<tr>
<td>ductile crack growth</td>
<td>85</td>
</tr>
<tr>
<td>early state fatigue damage</td>
<td>427</td>
</tr>
<tr>
<td>stress-life fatigue curves</td>
<td>388</td>
</tr>
<tr>
<td>ASTM E 399</td>
<td>357</td>
</tr>
<tr>
<td>ASTM E 813</td>
<td>69, 357</td>
</tr>
<tr>
<td>ASTM E 1152</td>
<td>69, 357</td>
</tr>
<tr>
<td>ASTM E 1737</td>
<td>357</td>
</tr>
<tr>
<td>ASTM E 1820</td>
<td>61, 357</td>
</tr>
<tr>
<td>ASTM E 1921</td>
<td>21, 51, 357</td>
</tr>
<tr>
<td>Atomistic simulation</td>
<td>278</td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bending stresses, induction-hardened shafts</td>
<td>240</td>
</tr>
<tr>
<td>Biaxial fatigue</td>
<td>299</td>
</tr>
<tr>
<td>Bolt-loaded specimen</td>
<td>377</td>
</tr>
<tr>
<td>Brittle cracks, welded beam-column connections</td>
<td>439</td>
</tr>
</tbody>
</table>

C

<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell modeling, ductile-to-brittle transition</td>
<td>152</td>
</tr>
<tr>
<td>Charpy impact energy</td>
<td>61</td>
</tr>
<tr>
<td>Cohesive strength, ductile fracture modeling</td>
<td>139</td>
</tr>
<tr>
<td>Cohesive zone models</td>
<td>139</td>
</tr>
<tr>
<td>Common format equation</td>
<td>34</td>
</tr>
<tr>
<td>Compliance ratio</td>
<td>185</td>
</tr>
<tr>
<td>adjusted</td>
<td>388</td>
</tr>
<tr>
<td>Confocal scanning laser microscopy technique</td>
<td>299</td>
</tr>
<tr>
<td>Constraint</td>
<td>115</td>
</tr>
<tr>
<td>physical evidence</td>
<td>115</td>
</tr>
<tr>
<td>quantifying</td>
<td>102</td>
</tr>
<tr>
<td>semi-elliptical cracks</td>
<td>403</td>
</tr>
<tr>
<td>Crack</td>
<td>240</td>
</tr>
<tr>
<td>elliptical subsurface</td>
<td>240</td>
</tr>
<tr>
<td>environmental</td>
<td>377</td>
</tr>
<tr>
<td>Crack closure</td>
<td>201, 227, 388</td>
</tr>
<tr>
<td>elastic</td>
<td>185</td>
</tr>
<tr>
<td>metal alloys</td>
<td>263</td>
</tr>
<tr>
<td>plasticity-induced</td>
<td>227</td>
</tr>
<tr>
<td>Crack face displacements</td>
<td>115</td>
</tr>
<tr>
<td>Crack growth</td>
<td>85</td>
</tr>
<tr>
<td>ductile</td>
<td>85</td>
</tr>
<tr>
<td>hydrogen</td>
<td>377</td>
</tr>
<tr>
<td>Crack initiation</td>
<td>347</td>
</tr>
<tr>
<td>Crack propagation</td>
<td>227</td>
</tr>
<tr>
<td>stress intensity factor</td>
<td>201</td>
</tr>
<tr>
<td>Crack tip opening angle</td>
<td>85</td>
</tr>
<tr>
<td>Crack tip opening displacement</td>
<td>115</td>
</tr>
<tr>
<td>Crack tip shielding</td>
<td>227</td>
</tr>
<tr>
<td>Crack tip stress field</td>
<td>347</td>
</tr>
</tbody>
</table>

D

<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Damage mechanics</td>
<td>152</td>
</tr>
<tr>
<td>Damage tolerance, honeycomb core sandwich panels</td>
<td>169</td>
</tr>
<tr>
<td>Debonding, stiffener</td>
<td>456</td>
</tr>
<tr>
<td>Disbond, facesheet-from-core</td>
<td>169</td>
</tr>
<tr>
<td>Discontinuities</td>
<td>115</td>
</tr>
<tr>
<td>Dissipation rate</td>
<td>139</td>
</tr>
<tr>
<td>Ductile fracture, modeling</td>
<td>139</td>
</tr>
<tr>
<td>Ductile-to-brittle transition fracture toughness</td>
<td>21</td>
</tr>
<tr>
<td>modeling</td>
<td>152</td>
</tr>
<tr>
<td>Ductility, welded beam-column connections</td>
<td>439</td>
</tr>
</tbody>
</table>

E

<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Earthquake engineering</td>
<td>439</td>
</tr>
<tr>
<td>Elasticity, semi-elliptical cracks</td>
<td>403</td>
</tr>
<tr>
<td>Elastic-plastic fracture mechanics</td>
<td>3, 357</td>
</tr>
<tr>
<td>Elastic region, common format equation</td>
<td>34</td>
</tr>
<tr>
<td>Energy release rate</td>
<td>169</td>
</tr>
<tr>
<td>Environmental cracking and fracture</td>
<td>377</td>
</tr>
</tbody>
</table>

F

<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facesheet-from-core disbond, honeycomb core sandwich panels</td>
<td>169</td>
</tr>
<tr>
<td>Failure assessment, fusion line cracks</td>
<td>102</td>
</tr>
<tr>
<td>Fatigue, stress-life curves</td>
<td>388</td>
</tr>
<tr>
<td>Fatigue crack, subsurface initiation</td>
<td>240</td>
</tr>
<tr>
<td>Fatigue crack growth</td>
<td>299</td>
</tr>
<tr>
<td>biaxial strain ratio and mechanism</td>
<td>299</td>
</tr>
<tr>
<td>multiparameter model</td>
<td>327</td>
</tr>
<tr>
<td>niobium aluminium intermetallics</td>
<td>278</td>
</tr>
<tr>
<td>stress-life curves</td>
<td>388</td>
</tr>
<tr>
<td>Fatigue crack propagation</td>
<td>201</td>
</tr>
<tr>
<td>lap joint specimens</td>
<td>214</td>
</tr>
<tr>
<td>metal alloys</td>
<td>263</td>
</tr>
<tr>
<td>subsurface</td>
<td>240</td>
</tr>
<tr>
<td>Fatigue life, effective</td>
<td>299</td>
</tr>
<tr>
<td>Finite element analysis</td>
<td>227</td>
</tr>
<tr>
<td>creep fracture parameter</td>
<td>313</td>
</tr>
<tr>
<td>honeycomb core sandwich panels</td>
<td>169</td>
</tr>
<tr>
<td>semi-elliptical cracks</td>
<td>403</td>
</tr>
</tbody>
</table>
size criteria, 357
3-D, 85
welded beam-column connections, 439

Finite radii notches, 69

Fracture
- displacement-based characterization, 115
- environmental, 377
- niobium aluminide intermetallics, 278
- semi-elliptical cracks, 403

Fracture mechanisms
- computational approach, 169
- elastic-plastic, 3, 357
- history, 347
- linear elastic, 357
- multiparameter model, 327
- time dependent, 313
- validity limits, 115

Fracture toughness
- apparent, 69
 - evaluations in transition range, 21
 - niobium aluminide intermetallics, 278
 - predicting J-R curve, 61
 - testing, notched round bars, 69
 - transition behavior, 51
 - unifying principles for evaluating, 34
 - welded beam-column connections, 439

Fusion line cracks, failure assessment, 102

G

Geometry effects, 102, 139
- Gurson model, 139

H

Hole expansion, 214
- Honeycomb core sandwich panels, facesheet-from-core disbond, 169
- Hoop strain, 299
- Hydrogen embrittlement, 377
- Hydrogen-induced cracking, 377

I

Impact energy, Charpy, 61
- Induction hardening, 240
- Instrumented bolt, 377

J

J-integral, 69, 357
 - as function of depth below surface, 115
J-Q-M approach, 102
J-R curve, predicting, 61

L

Lap joints, 214
- Large-scale tests, ductile-to-brittle transition, 152
- Leon, Alfons, 347
- Life prediction
 - induction-hardened steel, 240
 - lap joint specimens, 214
 - stress-life fatigue curves, 388
 - structural metallic materials, 327
 - titanium, 201
- Linear elastic fracture mechanics, 357
- Load interaction, 201
- Load transfer mechanism, 214

M

- Magnetometers, 427
- Master curve, 21, 201
 - micromechanical evaluation, 51
- Material mismatch effects, 102
- Meandering Winding Magnetometer, 427
- Metal alloys, fatigue crack propagation, 263
- Micromechanical models, 278
 - ductile fracture, 139
- Modified crack closure method, 169
- Multi-cell modeling, ductile-to-brittle transition, 152
- Multiparameter model, 327
- Multiple site damage, 214

N

Niobium aluminide intermetallics, forged damage-tolerant, 278
- Notched round bar, 69
- Notch stresses, 347

O

Out-of-plane bending, 85
- Overload effects, 227
- Overstrains, compressive, 299

P

Periodic compressive overstrain, 299
- Planar fracture specimens, fracture toughness evaluation, 34
- Plasticity, semi-elliptical cracks, 403
- Plastic region, common format equation, 34
- Plate finite element, 456
- Pressure vessel steels
 - fracture toughness evaluations, 21
 - modeling ductile-to-brittle transition, 152
- Probabilistic methods, 327
R

Reference temperature, 51
Residual stresses, 201
induction-hardened shafts, 240
Rivets, 214

S

Seismic design, 439
Separation energy, ductile fracture modeling, 139
Size criteria, consistent, 357
Slenderness ratio, 456
Stainless steels, early state fatigue damage, 427
Steel
 biaxial fatigue tests, 299
 crack closure effects, 227
 high-strength, 377
 induction-hardened, 240
 semi-elliptical cracks, 403
 welded beam-column connections, 439
Stiffener debonding, 456
Stitching, 456
Strain
 mean, 227
 range, 227
Strain energy release, stitching effect, 456
Strain ratio, biaxial, 299
Stress, semi-elliptical cracks, 403

T

Titanium, fatigue crack propagation, 201
Transition range, fracture toughness evaluation, 21

U

Unloading compliance, 357
Unstable fracture, 102

W

Weighardt, Karl, 347
Welded beam-column connections, finite element analysis, 439
Weldments, constraints, quantifying, 102
Woven composites, plate element-based model, 456