Subject Index

A

Acoustic resonance methods, dynamic elastic modulus, adhesive bonds, 162-179
Adhesive bonds, dynamic elastic modulus measurement, 162-179
Aluminum/silicon carbide (Al/SiC) composites, dynamic modulus measurement, 110-119
Anisotropic media elastic stiffness constants, 100-109
mechanically alloyed materials, 195-207
Attenuated materials, dynamic modulus measurement, 18-45

B

Bondtester, acoustic resonance methods, 162-179
Bulk modulus, elastic constants, 135-148

C

Cathodic charging, modulus measurements, 149-161
Cemented soils, resonant column testing, 180-194
Cohesive failure, dynamic elastic modulus, 162-179
Complex modulus data, interactive processing, 208-217
Composites
aluminum silicon carbide, dynamic modulus measurement, 110-119
dynamic flexural constitution, 58-74
fiber-reinforced, elastic constants, 120-134
Computers, complex modulus
Continuously excited free-free beam technique,
mechanically alloyed materials, 195-207
Crack detection, precision, continuous modulus measurements, 149-161
Crack growth and initiation, precision, continuous modulus measurements, 149-161

D

Damping materials
complex modulus data, interactive processing, 208-217
dynamic flexural modulus, 58-74
Dielectrics, dynamic modulus measurements and materials research, 3-17
Dispersive materials, dynamic modulus measurement, 18-45
Dynamic modulus
acoustic resonance methods, adhesive bonds, 162-179
Al/SiC composite, 110-119
crack growth and initiation, 149-161
flexural constitution, 58-74
IET (impulse excitation technique), 90-99
longitudinal and flexural resonance methods, 75-89
measurements and materials research, 3-17
thin (sub-wavelength) specimens, 18-45
pulsed ultrasonic velocity method, material determination, 47-56
vs. static modulus, 18-45
E

Elastic constants
- Bulk modulus, 135-148
- Fiber-reinforced composites, 120-134
- Resonating-orthotropic-cube method, 100-109
- Theoretical models, 120-134

Elastic modulus
- IET (impulse excitation technique), 90-99
- Longitudinal and flexural resonance methods, 75-89
- Measurements and materials research, 3-17
- Mechanically alloyed materials, 195-207
- Ultrasonic velocity method, 47-56

End-mass, dynamic flexural study, 58-74

Exfoliation, modulus measurements, 149-161

F

Ferromagnetic materials, dynamic modulus measurements and materials research, 3-17

Fiber-reinforced composites, elastic constants, 120-134

Flexural properties
- Dynamic modulus, 58-74
- Young's modulus, 75-89

Fourier Transforms, dynamic modulus measurement, 18-45

Frequency dependence, dynamic modulus measurement, 18-45

G-I

Grain size, dynamic modulus measurement, ultrasonic velocity method, 47-56

Hershey-Kroner-Eshelby models, elastic constants, 135-148

IET (impulse excitation technique) dynamic modulus measurement, 90-99

Mechanically alloyed materials, 195-207

Young's modulus, 75-89

Internal friction, dynamic modulus measurements and materials research, 3-17

L

Laminate theory, dynamic flexural constitution, 58-74

Legendre-polynomial approximating function, resonating-orthotropic-cube technique, 100-109

Logarithmic decrement, dynamic flexural constitution, 58-74

Longitudinal resonance method, dynamic Young's modulus, 75-89

M

Material dynamic elasticity, ultrasonic velocity method, 47-56

Mechanically alloyed materials, dynamic and static determination techniques, 195-207

Metallic glass, dynamic modulus measurements and materials research, 3-17

Metal matrix composites, dynamic modulus measurement, 110-119

Monocrystal-polycrystal relationships, elastic constant models, 135-148

N

Natural frequency, IET (impulse excitation technique), 90-99

Nondestructive testing acoustic resonance methods, adhesive bonds, 162-179

IET (impulse excitation technique), 90-99
Poisson ratio, elastic constant models, 135-148
Polycrystalline elastic constants, 135-148
PUCOT (piezoelectric ultrasonic composite oscillator technique) dynamic modulus, 110-119
Young's modulus, 75-89
Pulsed-wave transit-time technique, dynamic modulus materials, 47-56

Rayleigh-Ritz method, resonating-orthotropic-cube technique, 100-109
Receptance model, dynamic elastic modulus, adhesive bonds, 162-179
Reproducibility, Young's modulus, 195-207
Resonance techniques, dynamic modulus adhesive bonds, 162-179
Al/SiC composite, 110-119
Resonant column testing, cemented soils, 180-194
Resonating-orthotropic-cube method, elastic constants, 100-109

Sample coupling, resonant column testing, 180-194
Sand, resonant column testing, 180-194
Shear modulus
elastic constant models, 135-148
resonant column testing, 180-194
Soil dynamics, resonant column testing, 180-194
Soil testing, resonant column testing, 180-194
Sound velocities, fiber-reinforced composite elastic constants, 120-134
Static modulus vs. dynamic modulus, 18-45
Static tensile technique, Young's modulus, mechanically alloyed materials, 195-207
4330V Steel, dynamic Young's modulus, 75-89
Stress corrosion cracking, modulus measurements, 149-161
Structural damping, dynamic flexural constitution, 58-74
Sub-millimeter specimens, dynamic modulus measurement, 18-45
Sub-wavelength specimens, dynamic modulus measurement, 18-45
Superconductors, dynamic modulus measurements and materials research, 3-17

Temperature shift function complex modulus data, 208-217
dynamic Young's modulus, 75-89
Texture, Young's modulus, mechanically alloyed materials, 195-207
Thin specimens, dynamic modulus measurement, 18-45
Transient vibration, IET (impulse excitation technique), 90-99

Ultrasonic moduli
dynamic elastic modulus, adhesive bonds, 162-179
pulsed ultrasonic velocity method, 47-56
thin (sub-wavelength) specimens, 18-45
velocity testing
dynamic modulus, 47-56
Ultrasonic moduli (cont’d)
fiber-reinforced composites, 120-134

Vacuum, dynamic flexural constitution, 58-74
Vibrating reed, dynamic modulus measurements and materials research, 3-17
Vibrational modes, resonating-orthotropic-cube measurement, 100-109
Viscoelastic materials (VEM), complex modulus data, 208-217

Wave-scattering ensemble-average methods, fiber-reinforced composites, 120-134
Young’s modulus elastic constant models, 135-148
longitudinal and flexural resonance methods, 75-89
mechanically alloyed materials, 195-207