FLOW AND FRACTURE OF METALS AND ALLOYS IN NUCLEAR ENVIRONMENTS
NOTE

The Society is not responsible, as a body, for the statements and opinions advanced in this publication.
Related
ASTM Publications

Radiation Effects on Metals and Neutron Dosimetry, STP 341 (1963)

Radiation Effects on Materials, STP 233 (1959)
Contents

Introduction—C. E. WEBER ... 1

Atomistic Aspects of Irradiation Damage to Metals

Mechanisms of Radiation Damage in Reactor Materials—J. A. BRINKMAN
AND H. WIEDERSICH ... 3

Mechanisms of Radiation-Induced Mechanical Property Changes—R. S. BARNES ... 40

Discussion ... 68

Irradiation Hardening and Embrittlement in Body-Centered Cubic Transition Metals—A. S. WRONSKI, G. A. SARGENT, AND A. A. JOHNSON ... 69

Computer Studies of Neutron Irradiation Damage and Annealing in Finite BCC Iron Specimens—J. R. BEELER, JR. 86

Effects of Irradiation in Iron and Steels—D. R. HARRIES AND B. L. EYRE ... 105

Effect of Irradiation on Bend Transition Temperatures of Molybdenum-and Columbium-Base Alloys—H. E. MCCOY AND J. R. WEIR ... 131

Irradiation Effects on High-Temperature Reactor Structural Metals—T. T. CLAUDSON AND H. J. PESSL ... 156

Recovery of Defects in Neutron-Irradiated Tungsten—J. MOTEFF AND J. P. SMITH ... 171

The Nature and Annealing Behavior of Irradiation Damage in Molybdenum—B. L. EYRE AND A. C. ROBERTS ... 188

Discussion .. 197

Effects of Irradiation in Austenitic Steels and Other High-Temperature Alloys—P. C. L. PFEIL AND D. R. HARRIES 202

Engineering Properties and Behavior of Metals and Alloys in Nuclear Environments

The Flow and Fracture Properties of Unirradiated Stainless Steels—H. F. BEEGHLY ... 222

The Combined Effects of Temperature and Irradiation on The Mechanical Properties of Austenitic Stainless Steels—J. E. IRVIN, A. L. BEMENT, AND R. G. HOAGLAND ... 236

The Effect of Irradiation Temperature on the Post-Irradiation Stress-Strain Behavior of Stainless Steels—W. R. MARTIN AND J. R. WEIR ... 251

Discussion .. 267

In-Reactor Stress-Rupture Properties of a 20Cr-25Ni, Columbium-Stabilized Steel—J. T. VENARD AND J. R. WEIR ... 269

Discussion .. 282

New Information on Neutron Embrittlement and Embrittlement Relief of Reactor Pressure Vessel Steels—L. E. STEELE AND J. R. HAWTHORNE ... 283

Discussion .. 311

In-Depth Embrittlement of a Simulated Pressure Vessel Wall of A302-B Steel—C. Z. SERPAN, JR., AND L. E. STEELE ... 312
Discussion .. 322
Strain-Cycle Phenomena in Thin-Wall Tubing—M. B. REYNOLDS 323
Effects of Irradiation on A302-B Steel Subjected to a Multiaxial Stress Distribution—T. A. TROZERA AND P. W. FLYNN 337
In-Reactor Studies of Low-Cycle Fatigue Properties of a Nuclear Pressure Vessel Steel—J. R. HAWTHORNE AND L. E. STEELE 350
Discussion ... 363
Discussion .. 383
Discussion .. 394
Gas Formation and Compression Fractures in Irradiated Beryllium—J. M. BEESTON .. 395

Design Criteria, Code, and Safety Considerations of Irradiation Damage to Reactor Structural and Containment Components

The Use of Materials Properties by the Reactor Vessel Designer—B. F. LANGER .. 418
Discussion .. 428
The Significance of Recent Developments in Fracture Mechanics in Great Britain in Relation to the Safety of Reactor Pressure Vessels—W. H. IRVINE .. 429
The Important Materials Parameters Affecting the Performance of Nuclear Reactor Pressure Vessels—R. D. WYLIE 438
Discussion .. 450
Crack Propagation Tests on Zircaloy-2 Reactor Pressure Tubing in Both the Normal and Hydrided Conditions—R. C. AUNGST AND L. J. DEFFERDING .. 451
Discussion .. 462
Insurance Aspects of Radiation Damage in Reactor Structures—F. W. CATUDAL .. 464
Discussion .. 471