Index

A

Albumin, 105
Anderson, J. M., 221, 251, 321
Aneurysm clips, 147
Ankle joints, 424
Anodic polarization, 15
Arterial prostheses, 294
Ashford, R., 373
Asphaltani, A. I., 30
ASTM
Committee F-4 on Medical and Surgical Materials and Devices, 429
Practice for Assessment of Compatibility of Metallic Materials for Surgical Implants with Respect to Effect of Materials on Tissue (F 361–80), 158
Recommended Practice for Constant Amplitude Axial Fatigue Tests of Metallic Materials (E 466–76), 32
Recommended Practice for Experimental Testing for Biological Compatibility of Metals for Surgical Implants (F 361–72), 226
Recommended Practice for Performing Stress-Corrosion Cracking Tests in a Boiling Magnesium Chloride Solution (G 36–73) (1979), 77
Recommended Practice for Standard Reference Method for Making Potentiostatic and Potentiodynamic Anodic Polarization Measurements (G 5–78), 33, 79, 121
Recommended Practice for Static Bend Testing of Nail Plates (F 384–73), 93
Recommended Practice for Surface Preparation and Marking of Metallic Implants (F 86–76), 139, 353
Specification for Cast Cobalt-Chromium-Molybdenum Alloy for Surgical Implant Applications (F 75–76), 32, 410
Specification for Hip Nail—Jewett Type (F 369–73), 93
Specification for Stainless Steel Bar and Wire for Surgical Implants (F 55–76), 59, 74
Specification for Stainless Steel Bars and Wire for Surgical Implants (Special Quality) (F 138–76), 59, 108, 197, 210
Specification for Stainless Steel Sheet and Strip for Surgical Implants (F 56–78), 119
Specification for Titanium 6Al-4V ELI Alloy for Surgical Implant Applications (F 136–79), 74, 93, 108
Specification for Unalloyed Titanium for Surgical Implant Applications (F 67–77), 108
Specification for Wrought Cobalt-Nickel-Chromium-Molybdenum Alloy for Surgical Implant Applications (F 562–78), 108, 197
Tension Testing of Metallic Materials (E 8–79), 32
Test for Nickel in Water (D 1886–77), 107
Test for Rubber Deterioration—Crack Growth (D 813–59), 280
Test for Strength Properties of Adhesives in Shear by Tension Loading in the Temperature Range from −267.8 to −55°C (−450 to −67°F) (D 2557–72), 184
Test for Tensile Properties of Plastics by Use of Microtensile Specimens (D 1708–66), 324
Test Method for Plane-Strain Fracture Toughness of Metallic Materials (E 399–78a), 76
Test Method for Rubber Property—Tear Resistance (D 624–73), 280
Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials (D 790–81), 383
Test Methods for Rubber Properties in Tension (D 412–75), 283
Tests for Flexural Properties of Plastics and Electrical Insulating Materials (D 790–71), 344
Atomic absorption spectrophotometry, 223
Biocompatibility of materials, 30, 208, 223, 251, 278
Biodegradable materials, 340
Black, J., 28, 71, 223, 265
Blais, P., 294
Bone analysis, 387
Brown, C. A., 160
Brown, S. A., 105, 195
Bundy, K. J., 73
Burstein, A. H., 415
Cage implant system, 251
Carbon, 274
Carbon fibers, 340
Carboxylic acids, 294
Casper, R. A., 340
Cells, 208
Cement stresses, 373
Ceramic fibers, 340
Ceramics, 369
Charnley hip joint, 417
Chromium alloys
Co-Cr-Mo alloys, 11, 251, 373
Co-Ni-Cr-Mo alloys, 105
Corrosion reaction, 5
Grommets, 274
Metabolism, 242
Properties, 30
Systemic effects, 223
Tissue sensitivity, 209
Zimaloy, 11
Clark, G. C. F., 106
Clarke, I. C., 351, 373
Coatings, 6, 31, 179
Cobalt alloys
Aneurysm clips, 147
Cast, 12, 30
Co-Cr-Mo alloys, 351, 373
Co-Ni-Cr-Mo alloys, 418
Corrosion, 427
Grommets, 274
Properties, 274
Properties, 30
INDEX 453

Tissue sensitivity, 209
Zimaloy, 11
Composite materials, 340
Consensus development and standards, 434

Corrosion
Forms of, 6
Crevice attack, 6
Electrochemical, 168
Fatigue, 6, 30, 93, 179
Fretting, 93, 105
Oxidation effects, 28
Pitting, 6, 117, 147, 427
Stress-corrosion cracking, 6, 57, 73, 147
Potential shifts, 11
Products, 195, 223
Reactions, 5
Coulometers, 168
Cowsar, D. R., 340

Cracking
Fatigue, 93
Polyurethanes, 308, 322
Silicone, 278
Stress corrosion, 12, 30, 57, 73, 147
Crevice potential, 11

D

degroot Swanson, G., 267
Dental materials, 168
Depolymerization, 294
Desai, V. H., 73
Design standards, 429
Dimensional stability, 294
Donald, G. D., 160
Dujovny, M., 147
Dunn, R. L., 340

E

Ebramzadeh, E., 373
Edwards, B. J., 11
Elastomers, silicone, 267, 279, 424
Elbow joints, 424

Electrochemical corrosion, 168
Electropolishing, 136
External fixation, 160

F

Fatigue of materials, 5, 415, 435
Aneurysm clips, 147
Ball-joint rods, 160
Cement, 373
Co-Cr-Mo alloys, 11, 30
Co-Ni-Cr-Mo alloys, 418
Fretting, 93
Polyethylene, 351
Polyester, 294
Silicone, 267
316L stainless steel, 57, 73, 93, 136, 418
Ti-6Al-4V ELI, 73, 93, 179
Tricalcium phosphate ceramic, 369
Femoral prostheses, 373
Femoral stem fracture, 403
Fiber composites, 340
Fibrous capsule, 267
Film, passive, 73
Finger joints, 278, 424
Fissuring, 308, 424
Flexible hinges, 278
Flexural durability, 278
Flow propagation resistance, 278
Fracture mechanics (see also Cracking), 73, 415
Fraker, A. C., 106, 179, 432
Fretting
Co-Cr-Mo alloys, 31
MP35N, 105
316L stainless steel, 93, 105
Ti-6Al-4V alloy, 93, 105
Titanium, 105
Frisch, E. E., 278

G

Galvanic activity, 147
Garton, A., 294
Georgette, R., 321
Giant-cell response, 267, 425
Gilbert, J. L., 93
Gold alloys, 168
Greene, N. D., 5, 55, 71, 88, 115
Grommets, 274
Guidoin, R., 294
Gunasekera, K. R., 294
Gustavson, L., 56, 190

H
Hahn, H., 179
Hank's solution, 117
Hickl, J., 30
Hiltner, A., 251
Hip prostheses, 30, 93, 351
Hood, A. C., 56
Hood, R. W., 403
Horowitz, E., 265, 320, 427
Horvath, N., 322
Host tolerance, 267
Hydrogen embrittlement, 11
Hydrogen uptake, 13

I
Implant retrieval, 403, 415
Incentives, marketplace, 434
Infection, 195
Inflammatory response, 251
Infrared spectroscopy, 294
Iron, 208, 223, 237
Irving, C. C., 136
Irwin, G. R., 74

J
Joint components, 403, 415
Joint replacement, 373, 415
Joint simulator wear tests, 351

K
Kafesjian, R., 207
Kies, J. A., 74
King, M. W., 291, 294
Knee joints, 422
Kossovsky, N., 147
Kossowsky, R., 147
Kumar, P., 30

L
Langley, N. R., 278
Lare, P. J., 179
Lautenschluger, E. P., 223
Lawley, A., 30
Lemons, J., 25, 89, 178, 208, 369
Liability, product, 434
Lipid absorption, 278
Loosening of hip prostheses, 373
Louthan, M. R., Jr., 11
Lucas, L. C., 208

M
McArthur, W. A., 308
McCoy, K. D., 322
McKellop, H. A., 351
Malpractice, medical, 434
Mandible repair, 340
Manganese, 208
Marchant, R. E., 251
Marek, M., 168
Maupin, B. K., 267
Maxillofacial surgery, 340
Mayor, M. B., 429
Merritt, K., 105, 195
Metal alloys (see also Steel, Titanium)
- Chromium-nickel, 5
- Corrosion products, 195
- Corrosion reaction, 5
- Tissue sensitivity, 195
- Transport in the body, 203
- Zimaloy (Co-Cr-Mo), 11
Metal-cell complexes, 195
Metal-protein complexes, 195
Metal salts, 195, 208
Mina-Araghi, M., 373
Molybdenum alloys
Co-Cr-Mo alloys, 11, 351
Co-Ni-Cr-Mo alloys, 105
Properties, 30
Tissue response, 209
Zimaloy, 11
Morin, C. R., 57
Mueller hip joint, 417, 419

N
N-formyl-Met-Leu-Phe (MLP), 251
Nails, 93
Nalbandian, R. M., 267
Nickel alloys
Co-Ni-Cr-Mo alloys, 105
Corrosion reaction, 5
Tissue response, 209

O
Ogundele, G. I., 117, 178, 206, 321
Olson, R. W., 322
Ordway, R., 179
Organ accumulations, 223
Oxidation (see also Corrosion), 308
Oxide layer, 136

P
Pacing leads, 308, 322
Packer, K. F., 57
Parins, D., 264, 323
Performance standards, 429, 434
Piehlner, H. R., 56, 71, 93, 292, 434
Pitting, 7
Co-Cr-Mo alloys, 31, 39
Steel alloys, 117, 427
Plasma spraying, 179
Plastics (see Polymeric materials)
Plates, 93, 105
Polarization, 8, 11, 73, 117
Polishing, 136
Polymeric materials
Poly(ethylene terephthalate), 294
Poly (2-hydroxyethyl-L-glutamine) (PHEG), 251
Polyethylene, 274, 351, 403
Polyesters, 294, 340
Polyurethanes, 308, 322
Resins, 340
Silicone, 266, 278
Portnoff, M. A., 93
Powder metallurgy, 11, 30
Product liability, 434
Proplast, 274
Prosthetic hips, 351
Protein albumin, 105

R
Radiolucent zones, 373
Regulation
Medical device, 434
Social, 434
Reinforced plastics, 340
Resins (see also Polymeric materials), 185, 340
Retrieval analysis, 403, 415
Risk assessment and management, 434
Rods, 160
Rowe, R. H., Jr., 179

S
Salts, tissue response to, 195, 208
Scaffolds, porous, 369
Screws, 105, 108, 195
Seligson, D., 160
Semlitsch, M., 56, 246, 277, 292, 414, 427
Sensitivity of tissues, 195
Serum, 105
Sheehan, J. P., 57
Shetty, H. R., 71, 115
Silicone, 267, 278, 424
Silver alloys, 168
Sintering, 183
Sisson, R. D., Jr., 11
<table>
<thead>
<tr>
<th>Steel</th>
<th>stainless</th>
<th>17-7PH stainless, 147</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corrosion products</td>
<td>195</td>
<td></td>
</tr>
<tr>
<td>Effect of crevices on</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>potential shifts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Effects on cells</td>
<td>195, 208</td>
<td></td>
</tr>
<tr>
<td>Grommets</td>
<td>274</td>
<td></td>
</tr>
<tr>
<td>Hip prosthesis</td>
<td>373</td>
<td></td>
</tr>
<tr>
<td>loosening</td>
<td>373</td>
<td></td>
</tr>
<tr>
<td>Pitting</td>
<td>427</td>
<td></td>
</tr>
<tr>
<td>18Cr-8Ni</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>18Cr-8Ni-2Mo</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>301 stainless</td>
<td>147</td>
<td></td>
</tr>
<tr>
<td>303 stainless</td>
<td>147</td>
<td></td>
</tr>
<tr>
<td>304 stainless</td>
<td>58, 85-86</td>
<td></td>
</tr>
<tr>
<td>316L stainless</td>
<td>Aneurysm clips, 147</td>
<td></td>
</tr>
<tr>
<td>Corrosion</td>
<td>37, 117, 223</td>
<td></td>
</tr>
<tr>
<td>Effects on cells</td>
<td>208</td>
<td></td>
</tr>
<tr>
<td>Electropolishing</td>
<td>136</td>
<td></td>
</tr>
<tr>
<td>Fatigue</td>
<td>418</td>
<td></td>
</tr>
<tr>
<td>Fretting corrosion</td>
<td>105</td>
<td></td>
</tr>
<tr>
<td>Stress corrosion</td>
<td>57, 73</td>
<td></td>
</tr>
<tr>
<td>Cracking</td>
<td>57, 308, 322</td>
<td></td>
</tr>
<tr>
<td>In cement</td>
<td>373</td>
<td></td>
</tr>
<tr>
<td>Residual</td>
<td>320</td>
<td></td>
</tr>
<tr>
<td>Stress corrosion</td>
<td>7, 11, 30, 73</td>
<td></td>
</tr>
<tr>
<td>Strain rate</td>
<td>57</td>
<td>9</td>
</tr>
<tr>
<td>Stress</td>
<td>Cracking, 57, 308, 322</td>
<td></td>
</tr>
<tr>
<td></td>
<td>In cement, 373</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Residual, 320</td>
<td></td>
</tr>
<tr>
<td>Stress corrosion</td>
<td>7, 11, 30, 73</td>
<td></td>
</tr>
<tr>
<td>1018 carbon</td>
<td>8, 9</td>
<td></td>
</tr>
<tr>
<td>Strain rate</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>Stress</td>
<td>Cracking, 57, 308, 322</td>
<td></td>
</tr>
<tr>
<td></td>
<td>In cement, 373</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Residual, 320</td>
<td></td>
</tr>
<tr>
<td>Stress corrosion</td>
<td>7, 11, 30, 73</td>
<td></td>
</tr>
<tr>
<td>1018 carbon</td>
<td>8, 9</td>
<td></td>
</tr>
</tbody>
</table>

Swanson, A. B., 267

Szycher, M., 308

T

Tafel extrapolation, 8

Tarnishing, 168

Tear propagation strength, 278

Temperature effects, 128, 132

Tension tests

Co-Cr-Mo alloys, 11, 30

316L stainless steel, 60

Titanium alloy, 183

Tissue response, 195, 208

Titanium

Corrosion, 13, 105, 427

Grommets, 274

Sponge, 179

Ti-6Al-4V alloy, 93, 105, 179, 351, 373

Toe joints, 278

Total-hip replacement, 373

Transmission electron microscopy, 208

Trapezoidal-28 hip joint, 417

Tricalcium phosphate ceramic, 369

U

Ultrastructures of cells, 208

V

VanOrden, A. C., 264, 427

Vascular diseases, 294

Vascular surgery, 147

Vegdahl, E. J., 93

W

Wear

Clinical, 351

Debris, 267, 403

Metal, 422

Polyethylene, 351, 403, 415

Weber, M. J., 93
White, W. E., 117
Williams, D. F., 106
Wound healing, 340
Wright, T. M., 415

X-ray diffraction, 147

Y
Yapp, R., 266

X
Z
Zimaloy, 11