Index

A

Absolute coil, 256
 Reduction of error, 260
Accuracy of defect measurements, 225
A-c field measurement
 Theoretical versus experimental results, 414
A-c field model for crack depth, 405
Adaptive learning, 485
 Defect data base, 488
 Experimental results, 491
 Signal processing for, 488
Algorithm, encircling coil on cylindrical conductor, 214
Alloy solubility limit, 164
Aluminum alloys, 189
Aluminum standards, drift rate, 100
Analytical solution (see Eddy current), 7
Anisotropy, in cold-drawn aluminum, 169
Artificial defect, 80

B

Boundary integral equation, 298
 Differences in application of, 303
 For solenoid around cylindrical conductor, 301
 Numerical solution of, 303

Brass standards, drift rate, 107
Bronze standards, drift rate, 107

C

Casting
 Defects in, 174
 Solidification effects, 180
Cladding test
 Multifrequency, 207
 Pulsed, 293
Coil, impedance (see Impedance)
Composite
 Defect model, 145
 Defects in, 141
 Fabrication, 140
 Graphite-aluminum, 140
 Materials, 140
Conductivity
 Effect on pulse shape, 132
 Measurement at low temperature, 157
 Spatially dependent model, 182
Conductivity standards
 Drift rate for various metals, 102-108
Conductivity variation, 111
Continuous casting, 173
Control defects, 80
Counter sink depth, 135
Crack depth
 A-c field model, 405
EDDY-CURRENT CHARACTERIZATION OF MATERIALS

Theoretical versus experimental results, 414
Crack detection, 129
Crank-Nicolson solution, 25

D

Data acquisition, 393
Data base
- For adaptive learning, 488
- For pattern recognition, 466

Defect
- Classification, 480
- Composites, 241
- Effects on signal out, 230
- Electromagnetic field interaction in, 269, 271, 285
- Length, 82
- Reference standards for tubes, 81
- Resolution, 80
- Slot length, 82
- Standards, 80
- Tube, 83
- Type classification, 480

Defect characterization, theoretical problem, 6
Defect detection, in composites, 147
Defect interaction
- Errors in theoretical model, 280
- Experimental verification of model, 279
- Phase and size information, 281
- Signal versus orientation, 281

Defect signals
- Microwave, 354
- Multifrequency, 194

Depth of penetration
- Alternating currents, 402
- Pulsed fields, 374
- Differential coil, 256
- Field contours, 15
- Drilled hole, 80, 81

Eddy current, analytical solution
- Circular ring, 245
- Coaxial circular tube, 245
- History of, 7
- Magnet case, 252
- Square plate, two materials, 250
- Square plate with holes, 250
- Support plate, aluminum alloy, 248
- Support plate, steel, 249
- Toroidal vacuum vessel, 246

Eddy-current decay, 157
- Advantages of measurement, 160
- Limitations of measurement, 160
- Measurement of, 157
- Specimen preparation, 160
- Voltage-flux relationship in, 159

Eddy-current fields
- EDDYNET, 49
- Using finite element analysis, 60
- Edge margin, effect on pulse shape, 135

Electromagnetic field distribution
- For surface crack, 406
- For surface crack with circular arc, 410

Electromagnetic field formulation
- Electromagnetic scattering, 312
- Electroslag remelting, 173
- For eddy-current problems, 9, 23, 11, 70, 300, 406

End effect, 82
Eutectic liquid, 181

F

Facsimile recording, 450
- Of defects, 457
- Fastener height, effect on signal, 135
- Fast Fourier transform, 471
Fatigue crack, 348
Monitoring, 473
Ferromagnetic resonance probe, 343, 349
Finite difference analysis, 11
Finite element analysis, 12, 60, 22
Assumptions, 60
Basic description, 12
Boundary condition, 62
Energy functional, 12
Forcing function, 62
Instantaneous field equation, 24
Resistance determination, 62
State space, 26
Finite element discretization, 13
Flux density, changes in, 442
Laplace transform, 479
Flux leakage, 428
Analytical model, 436
Analytical model versus experiment, 442
Change in flux density, 442
Signals obtained, 428
Fracture analysis, 472

H
Heat exchanger, multifrequency test, 210, 226
Heat treatment, relation to conductivity, 95

I
IACS, 95
Impedance change
Calculation of, 70
During solidification process, 181
Impedance, finite element determination, 14
Inclusion, theoretical representation, 337

L
Least squares fitting, for multiple unknown parameters, 233
Lift-off, compensation, 124, 364
Lift-off, effect on pulse shape, 137
Linear addition of multifrequency signals, 281
Linear diffusion equation, 61
Linear discrimination function, 479
Line elements, current carrying, 49, 54
Loop currents, 243
Lorentz reciprocity relation, 333
Low-frequency inspection, 129

M
Magnetic diffusion equation, 159
Magnetic domain indicator, 90
Magnetic flux density by Laplace transform, 371
Magnetic inductor, 91
Magnetic saturation model, 87
Magnetic structure, 240
Material characterization, 39
Matthiessen's rule, 157
Measurement method, idealization, 322
Metal matrix composites, 146
Microwave, 311, 332, 348
 Comparison with low frequency, 353
 Defect signals, 332, 354
 Instrumentation, 352
Modeling
 Circuit equations, 242
 Coupled circuits, 87
 Current carrying line elements, 24, 54
 Curved shell, 53, 54
 Defect interaction, 276
 Equivalent network, 86, 241
 Hysteresis model, 91
 Lumped circuit equations, 242
 Macroscopic, 86
Multifrequency, 189, 204, 213, 229, 255, 269
 Advantages, 192, 265
 Analysis of nonunique signals, 200
 Defect signals, 194
 Mix effectiveness, 195
 Mixer, 193
 Mixing limitation, 198
 Multiplexing, 219
 Optimization of signal, 223
 Suppression of unwanted signals, 256
 Two frequency versus three frequency, 196
 Using absolute coil, 60
Multifrequency instrumentation, 190, 219, 236, 256, 260
Multiparameter, 189, 255, 269, 282
 Benefits, 193

N
Nonlinear metallic structure, 23
Notch, 82
Numerical methods, 11
 Algorithm for coil encircling tube, 214
 Algorithm for coil inside tube, 214
 Boundary integral equation, 303
 Finite difference, 11
 Finite element, 12
 Numerical solution, 11, 22, 48, 303

O
Optimizing test frequency, 213, 223

P
Pattern recognition, 464
 Defects for, 466
 Empirical Bayes procedure, 477
 Least squares model, 479
 Nearest neighbor, 479
Perturbation, electric current (see Flux leakage)
 Phase angle, 197, 206, 258, 281
 Phase boundary, 164
 Power loss, eddy current, 88
 Precipitation, 165
 Probe, ferromagnetic resonance, 343, 349
 Probe response, 376
 Impedance change, finite element model, 70
 Microwave and low frequency, 340
 Microwave model, 333
 Pulsed eddy currents, 367, 374, 387
 Analytical model, 369
Depth of penetration, 374
Instrumentation, 131, 367, 388
Pulse shape, 373
 Edge margin effect, 135
 Fastener height variation, 136
 Lift-off, 137
 Steel fasteners, 133
 Theoretical, 373
 Varying conductivity, 136

Theoretical zone model, 178
Solonoid
 Around cylindrical conductor, 299
 Basic equation, 300
Stability, of standards, 94
Standards
 Primary conductivity, 96
 Secondary conductivity, 97
 Tubing defect, 81
Steel elongator roll, 420
Steel fastener, effect on pulse shape, 133
Steel sheet, pulsed model, 369
Support plate, signal evaluations, 284
Surface crack, 312
 Electromagnetic field distribution, 406
 Integral equation, 336
 Two-dimensional integral model, 64
 With circular arc, 410

Tubing, multiple cylinder model, 231
Tubular welded t-joint, 415
Two-dimensional scattering, 64

U
Uniform thinning, sizing of, 481
<table>
<thead>
<tr>
<th>V</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage-flux relation, eddy-current decay, 159</td>
<td>Wall thickness, 235</td>
</tr>
<tr>
<td>Volume resistivity, 97</td>
<td>Waveform parameterization, 467</td>
</tr>
<tr>
<td></td>
<td>Welded joints, 206</td>
</tr>
<tr>
<td></td>
<td>Weld test, multifrequency, 207</td>
</tr>
</tbody>
</table>