TIME DEPENDENT AND NONLINEAR EFFECTS IN POLYMERS AND COMPOSITES

RICHARD A. SCHAPERY AND C. T. SUN
EDITORS

STP 1357
Foreword

The Symposium on *Time Dependent and Nonlinear Effects in Polymers and Composites* was held on May 4–5, 1998 in Atlanta, Georgia. ASTM Committee D-30 on Composite Materials sponsored the Symposium. Richard Schapery, the University of Texas at Austin, and C. T. Sun, Purdue University, presided as symposium co-chairmen and are editors of this publication.
Contents

Overview

Polymer

 Page 3
- Time Dependent Volume and Enthalpy Responses in Polymers—G. B. McKenna and S. L. Simon
 Page 18
- Creep Behavior in Amorphous and Semicrystalline PEN—M. L. Cerrada and G. B. McKenna
 Page 47
- A Constitutive Model for Long-Term Behavior of Polymers—I. D. Skrypnyk, J. L. Spoormaker, and P. Kandachar
 Page 70
- Implementation of Constitutive Model in FEA for Nonlinear Behavior of Plastics—I. D. Skrypnyk, J. L. Spoormaker, and W. Smit
 Page 83
- The Effect of Nonlinear Viscoelasticity on Interfacial Shear Strength Measurements—G. A. Holmes, R. C. Peterson, D. L. Hunston, W. G. McDonough, and C. L. Schutte
 Page 98
- An Overstress Model for Solid Polymer Deformation Behavior Applied to Nylon 66—E. Kremp and Kwangsoo Ho
 Page 118

Composites

- Aging During Elevated Temperature Stress Relaxation of IM7/K3B Composite—T. S. Gates, L. C. Brinson, K. S. Whitley, and T. Bai
 Page 141
- Tensile and Compressive Creep of a Thermoplastic Polymer and the Effects of Physical Aging on the Composite Time-Dependent Behavior—D. R. Veazie and T. S. Gates
 Page 160
Nonlinear Multiaxial Behavior and Failure of Fiber-Reinforced Composites—
S.-C. HUNG AND K. M. LIECHTI 176

Nonlinear and Dynamic Compressive Behavior of Composites with Fiber
Waviness—H. M. HSIAO AND I. M. DANIEL 223

Nonlinear Viscoelastic Behavior of Rubber-Toughened Carbon and Glass/
Epoxy Composites—R. T. BOCCHIERI AND R. A. SCHAPERY 238

A Viscoplasticity Model for Characterizing Loading and Unloading Behavior
of Polymeric Composites—C. M. ZHU AND C. T. SUN 266

Durability and Damage Tolerance of a Polyimide Chopped Fiber Composite
Subjected to Thermomechanical Fatigue Missions and Creep Loadings—
M. G. CASTELLI, J. K. SUTTER, AND D. BENSON 285

Life Prediction of PPS Composites Subjected to Cyclic Loading at Elevated
Temperatures—J. S. LOVERICH, B. E. RUSSELL, S. W. CASE, AND
K. L. REIFSNIDER 310

Accelerated Strength Testing of Thermoplastic Composites—J. R. REEDER,
D. H. ALLEN, AND W. L. BRADLEY 318

Hygrothermal Modeling of Polymers and Polymer Matrix Composites—
SAMIT ROY 338

Hygrothermal Effects on Failure Mechanisms of Composite/Steel Bonded
Joints—A. ROY, E. GONTCHAROVA-BÉNARD, J.-L. GACOUGNOLLE, AND
P. DAVIES 353

Indexes 373
Overview

Polymeric composites exhibit appreciable time-dependent and nonlinear mechanical behavior in many structural applications. Improved fundamental understanding of and predictive models for this behavior over service lifetimes in realistic environments are needed for composites to gain wider acceptance and to achieve a significantly increased level of structural efficiency and reliability in commercial and military applications.

In advanced fibrous composites, the fiber phase is basically linearly elastic and shows little nonlinear and time-dependent behavior, if any. Thus, the nonelastic properties originate primarily from the matrix phase, including the polymer-fiber interphase zone. It is evident that to understand and to model the nonelastic behavior of composites, one must understand and be able to model this behavior in polymers.

Understanding the in situ behavior of the polymeric matrix and its interaction with fibers is an important part of developing improved predictive models. Because there is now a considerable amount of research activity worldwide on time-dependent and nonlinear effects in polymers and composites, it is desirable to describe and assess recent developments and their practical significance as well as to identify important unsolved fundamental problems. For these reasons, the two related disciplines, polymers and composites, were brought together at the Symposium on Time-dependent and Nonlinear Effects in Polymers and Composites. One of the main objectives of this symposium was to join the effort of specialists in these two disciplines to advance research in this important area of polymeric composites.

This volume contains eighteen papers presented at the Symposium. They are grouped under two subheadings, Polymers and Composites. Under Polymers, the primary topics are chemical and physical aging, nonlinear viscoelasticity and viscoplasticity. A number of topics are addressed by the papers under Composites, including the effect of physical aging on time-dependent behavior of composites, multiaxial nonlinear effects, compressive behavior, nonlinear viscoelasticity and viscoplasticity, failure and failure mechanisms, hygrothermal effects, durability, and accelerated strength testing.

We want to express our sincere thanks to all those who made the symposium and this STP possible. The excellent contributions of the authors, reviewers, presenters, session chairs, ASTM staff, and sponsoring technical committee are deeply appreciated.

Richard A. Schapery
The University of Texas, Austin, Texas;
symposium cochairman and editor

C. T. Sun
Purdue University, West Lafayette, Indiana;
symposium cochairman and coeditor