Foreword

This publication, Effects of Radiation on Materials: 17th International Symposium, contains papers presented at the symposium of the same name, held in Sun Valley, Idaho on 20-23 June 1994. The symposium was sponsored by ASTM Committee E-10 on Nuclear Technology and Applications. David S. Gelles of Pacific Northwest National Laboratory in Richland, WA; Randy K. Nanstad of the Oak Ridge National Laboratory in Oak Ridge, TN; Arvind S. Kumar of the University of Missouri in Rolla, MO; and Edward A. Little of University College in Swansea, United Kingdom presided as symposium chairmen and are editors of the resulting publication.
Peter D. Hedgecock contributed significantly to the success of ASTM Committee E-10 on Nuclear Technology and Applications. Peter has been the Chairman of Subcommittee E10.02, on Radiation Effects on Structural Materials until the time of his sudden death. His colleagues within ASTM acknowledge his high degree of professionalism, organization, and enthusiasm.

Peter was trained as a metallurgical engineer at the University of London and was licensed in the United States as a metallurgical, corrosion, and nuclear engineer. His knowledge and experience extended beyond that of nuclear structural materials, since he had extensive exposure in the aerospace industry and as an expert witness in accident reconstruction and component failures.

Peter was a gentleman and a friend. We will miss him.
Contents

Overview—D. S. Gelles, R. K. Nanstad, A. E. Kumar, and E. A. Little

Modeling of Controlling Mechanisms in RPV Steels

Mechanisms Controlling the Composition Influence on Radiation Hardening and Embrittlement of Iron-Base Alloys—V. A. Nikolaev and V. V. Rybin

Pressure Vessel Embrittlement Predictions Based on a Composite Model of Copper Precipitation and Point Defect Clustering—R. E. Stoller

Modeling of Irradiation Embrittlement and Annealing/Recovery in Pressure Vessel Steels—R. G. Lott and P. D. Freyer

Microstructure Studies on RPV Steels

Electron Microscopy and Small Angle Neutron Scattering Study of Precipitation in Low Alloy Steel Submerged-Arc Welds—T. J. Williams and W. J. Phythian
Radiation Damage Studies Using Small-Angle Neutron Scattering—
G. ALBERTINI, F. CARSUGHI, R. COPPOLA, F. RUSTICHELLI, AND M. STEFANON 206

Damage Structures of Proton Irradiated Fe-0.3wt. % Cu Alloy—A. KIMURA,
H. SHIBAMOTO, H. YUYA, M. HASEGAWA, S. YAMAGUCHI, AND H. MATSUI 220

Mitigation of Irradiation Embrittlement by Annealing—A. D. AMAVEV,
A. M. KRYUKOV, V. I. LEVIT, P. A. PLATONOV, AND M. A. SOKOLOV 232

Microstructure and Mechanical Properties of WWER-440 Reactor Vessel
Metal After Service Life Expiriation and Recovery Anneal—
I. V. GORYNIN, E. V. NESTEROVA, V. A. NIKOLAEV, AND V. V. RYBIN 248

A Microstructural Study of Phosphorus Segregation and Intergranular
Fracture in Neutron Irradiated Submerged-Arc Welds—P. J. E. BISCHLER
AND R. K. WILD 260

CHARPY IMPACT RESPONSE OF RPV STEELS

Effects of Annealing Time on the Recovery of Charpy V-Notch Properties of
Irradiated High-Copper Weld Metal—S. K. ISKANDER, M. A. SOKOLOV, AND
R. K. NANSTAD 277

In-Service Embrittlement of the Pressure Vessel Welds at the Doel I and II
Nuclear Power Plants—R. GERARD, A. FABRY, J. VAN DE VELDE,
J.-L. PUZZOLANTE, A. VERSTREPEN, T. VAN RANSBEECK, AND E. VAN WALLE 294

The Toughness of Irradiated Pressure Water Reactor (PWR) Vessel Shell
Rings and the Effect of Segregation Zones—M. BETHMONT, J.-M. FRUND,
B. HOUSIN, AND P. SOULAR 320

Low Temperature Embrittlement of RPV Support Structure Steel—
F. M. D. BOYDON, R. J. McELROY, G. GAGE, AND W. J. PHYTHIAN 331

Effects of Neutron Flux and Irradiation Temperature on Irradiation
Embrittlement of A533B Steels—M. SUZUKI, K. ONIZAWA, AND M. KIZAKI 351

The Interpretation of Charpy Impact Test Data Using Hyper-Logistic Fitting
Functions—J. L. HELM 363

Uncertainty Evaluation in Transition Temperature Measurements—
C. BRILLAUD, H. AUGENDRE, AND M. BETHMONT 375
On Impact Testing of Subsize Charpy V-Notch Type Specimens—
M. A. SOKOLOV AND R. K. NANSTAD 384

Reconstitution: Where Do We Stand?—E. VAN WALLE 415

The Reconstitution of Charpy-Size Tensile Specimens—T. VAN RANSBEECK,
E. VAN WALLE, A. FABRY, J. L. PUZZOLANTE, AND J. VAN DE VELDE 442

Notch Reorientation of Charpy-V Specimens of the BWR Philippsburg 1
Through Reconstitution—E. VAN WALLE, A. FABRY, T. VAN RANSBEECK,
J.-L. PUZZOLANTE, J. VAN DE VELDE, K. TULKE, AND W. BACKFISCH 458

Variations in Charpy Impact Data Evaluated by a Round-Robin Testing
Program—A Summary—A. L. LOWE, JR. 487

The Embrittlement Data Base (EDB) and Its Applications—J. A. WANG,
F. B. K. KAM, AND F. W. STALLMANN 500

Surveillance Programme for WWER-440/Type 213 Reactor Pressure
Vessels—Standard Programme, Re-Evaluation of Results,
Supplementary Programme—M. BRUMOVSKY, P. NOVOSAD, AND J. ZDAREK 522

STRENGTH AND TOUGHNESS ISSUES IN RPV STEELS

Application of Micromechanical Models of Ductile Fracture Initiation to
Reactor Pressure Vessel Materials—R. CHAOUADI, P. DE MEESTER,
E. VAN WALLE, A. FABRY, AND J. VAN DE VELDE 531

On the Effect of Flux and Composition on Irradiation Hardening at 60°C—

The Dependence of Radiation Hardening and Embrittlement on Irradiation
Temperature—R. B. JONES AND T. J. WILLIAMS 569

HFIR Steels Embrittlement: The Possible Effect of Gamma Field
Contribution—I. REMEC, J. A. WANG, AND F. B. K. KAM 591

The Influence of Metallurgical Variables on the Temperature Dependence of
Irradiation Hardening in Pressure Vessel Steels—G. R. ODETTÉ,
G. E. LUCAS, AND R. D. KLINGENSMITH 606

Fracture Toughness Test Results of Thermal Aged Reactor Vessel Materials—M. J. DEVAN, A. J. LOWE, JR., AND J. B. HALL

The Effect of Constraint on Toughness of a Pressure Vessel Steel—K. EDSINGER, G. R. ODETT, G. E. LUCAS, AND B. WIRTH

The Effects of Thermal Annealing on Fracture Toughness of Low Upper-Shelf Welds—M. A. SOKOLOV, R. K. NANSTAD, AND S. K. ISKANDER

Evaluation of Embrittlement in a Pressure Vessel Steel by Fracture Reconstruction—B. WIRTH, K. EDSINGER, G. R. ODETT, AND G. E. LUCAS

FERRITIC AND MARTENSITIC STEELS

Influence of Thermomechanical Treatment on Irradiation Microstructures in an ODS Ferritic Steel—E. A. LITTLE

Effect of Boron on Post Irradiation Tensile Properties of Reduced Activation Ferritic Steel (F-82H) Irradiated in HFIR—K. SHIBA, M. SUZUKI, A. HISHINUMA, AND J. E. PAWEL

Evaluation of the Upper Shelf Energy for Ferritic Steels from Miniaturized Charpy Specimen Data—H. KURISHITA, I. SHIBAHARA, M. NARUI, S. MIZUTA, AND H. KAYANO

On the Role of Strain Rate, Size and Notch Acuity on Toughness: A Comparison of Two Martensitic Stainless Steels—G. E. LUCAS, G. R. ODETT, K. EDSINGER, B. WIRTH, AND J. W. SHECKHERD
Microstructural Evolution of Austenitic Stainless Steels Irradiated In a Fast Reactor—O. V. Borodin, V. V. Bryk, V. N. Voyevodin, I. M. Neklyudov, V. K. Shamardin, and V. S. Neystroev

Effects of Metallurgical Variables on Swelling of Modified 316 and Higher Ni Austenitic Stainless Steels—I. Shibahara, N. Akasaka, and S. Onose

Irradiation Hardening and Loss of Ductility of Type 316L(N) Stainless Steel Plate Material Due to Neutron-Irradiation—M. G. Horsten and M. I. De Vries

Fatigue Crack Propagation by Channel Fracture In Irradiated 316 Stainless Steel—S. Jitsukawa, A. Hishinuma, and M. Suzuki

Helium Effects on the Reweldability and Low Cycle Fatigue Properties of Welded Joints for Type Cr16Ni11Mo3Ti and 316L(N) Stainless Steels—S. A. Fabritsiev and J. G. van der Laan

OTHER MATERIALS

Saturation of Swelling in Neutron Irradiated Pure Nickel and Its Dependence on Temperature and Starting Dislocation Microstructure—J. F. STUBBINS AND F. A. GARNER

Swelling and Structure of Vanadium-Base Alloys Irradiated in the Dynamic Helium Charging Experiment—H. M. CHUNG, B. A. LOOMIS, AND D. L. SMITH

Corrosion Response of Pre-Irradiated Zr-2.5Nb Pressure Tube Material—V. F. URBANIC AND M. GRIFFITHS

SPECIAL PROCEDURES AND TECHNIQUES

The Development of Structural Materials for Reduced Long-Term Activation—K. EHRLICH, S. W. CIERJACKS, S. KELZENBERG, AND A. MOSLANG

Characterization of Irradiation-Induced Precipitates by Small Angle X-Ray and Neutron Scattering Experiments—M. GROSSE, F. EICHHORN, J. BOHMERT, AND G. BRAUER

Variable Energy Positron Measurements at Nitrogen Ion Bombarded Steel Surfaces—G. BRAUER, A. KOLITSCH, H. SCHUT, AND A. VAN VEEN
Overview

ASTM Committee E-10 on Nuclear Technology and Applications sponsors a biennial series of symposia on the effects of radiation on materials. The first symposium was held in 1960 and followed an earlier series begun in 1956 by ASTM Committee E-10, then called the Committee on Radioisotopes and Radiation Effects. Since that first meeting, these symposia have continued to grow in importance as nuclear energy has provided an increasingly larger fraction of the world's electrical capacity. The meetings have become a major international forum for the presentation and discussion of research on the influence of radiation on the microstructure and mechanical properties on structural materials. The proceedings of the Seventeenth International Symposium on the Effects of Radiation on Materials are published in two parts, in this ASTM special technical publication (STP) 1270 and in a special issue of the *Journal of Nuclear Materials*, Volume 225 (1995). The symposium was held in Sun Valley, Idaho on 20–23 June 1994.

The Seventeenth International Symposium is distinguished by the very large attendance attained. One hundred seventy-seven abstracts were submitted for presentation at the symposium, and 104 are now being published in the combined proceedings of the symposium. The size of this publication effort has proven to be too large to fit in an ASTM STP, and therefore, it was necessary to split the publication between two publishers. The basis chosen for the split was relevance to ASTM standards, with the underlying intent to include in each publication examples of the wide range of topics covered. As a result, the papers being published in this volume represent the full range of topics covered at the symposium, but emphasize those topics that are most closely related to ASTM standards.

The papers published in this STP have been organized into eight sections. The first four sections are devoted to behavior of low alloy reactor pressure vessel steels. Papers on pressure vessel steels constituted approximately half of the papers submitted, and topics range from discussions of modeling and mechanisms, to microstructure and welding effects, but the greatest number describe mechanical property response or mechanical property data base information. The next two sections describe research on two other major classes of material: ferritic and martensitic steels and austenitic steels and the seventh section includes papers on the remaining materials of interest. The final section contains papers concerning special procedures, such as development of low long-term activation steels for fusion applications, and special techniques, such as positron measurements, laser extensometry, and small angle neutron scattering measurements.

Recent improvement in our understanding of reactor pressure vessel steel embrittlement has advanced rapidly, so that this proceedings contains seven papers in section one that describe mechanisms controlling behavior and model the processes of radiation embrittlement and segregation. Section two focuses on the precipitation process that controls embrittlement, including reports on electron microscopy and small angle neutron scattering, and the improvements available from annealing procedures to recover properties by altering precipitate distributions. Section three includes thirteen papers that expand and organize the mechanical properties data base on irradiation embrittlement. Topics include the effects of annealing on properties, properties of irradiated welds and specific reactor parts, consequences of flux, irradiation temperature and gamma radiation, interpretation of data by
specialized data analysis procedures, use of small specimen technology and reconstitution, and data base summaries including round robin test results. Section four expands the mechanical properties data base on reactor pressure vessel steels, providing six papers with improved understanding of irradiation hardening, one paper concerned with ductile fracture mechanisms and finally four important papers on fracture toughness results including new techniques used to understand the fracture process in these steels.

Section five provides a shift in attention to steels with higher chromium levels for use at higher temperatures. Papers include development of Martensitic steels for fusion, effects of radiation on the microstructure of an oxide dispersion strengthened alloy, and four papers on the mechanical properties of this class of steels. Section six is concerned with austenitic ferrous alloys, with four papers covering microstructural response, a paper on the fundamentals of radiation damage in this class of materials, six papers on mechanical properties, and one paper concerned with development of a materials data base. Section seven includes two papers on microstructural evolution in nickel, two papers on mechanical properties of aluminum alloys, two papers on helium effects in vanadium, one on microstructure, the second on mechanical properties, and finally a paper on corrosion of a zirconium alloy. The last section includes four specialized papers on development of structural materials for fusion to avoid long-term radioactivity, and on use of neutron scattering for precipitate characterization, positron measurements, and laser extensometry.

It should also be noted that this proceedings contains a series of excellent papers concerned with the development of small specimen technology and understanding of fractographic information for assessment of fracture toughness response. Papers on these topics are included in sections three, four, and five. Together, they demonstrate that our understanding of the propagation of a crack tip is increasing rapidly.

A photograph of attendees is provided in Fig. 1.

Finally, in order to be fair to those authors at this symposium whose papers could not be
published in this volume, we have provided the following section that lists authors and titles of papers that have appeared in the companion volume of this proceedings, Volume 225 of the *Journal of Nuclear Materials*.

David S. Gelles
Battelle Pacific Northwest National Laboratory
Richland, WA
Symposium Chairman and Editor

Randy K. Nanstad
Oak Ridge National Laboratory
Oak Ridge, TN
Symposium Cochairman and Editor

Arvind E. Kumar
University of Missouri-Rolla
Rolla, MO
Symposium Cochairman and Editor

Ted A. Little
Dept. of Materials Engineering
University College, Swansea, UK
Symposium Cochairman and Editor

Papers Included in the *Journal of Nuclear Materials*—Volume 225, 1995

The Effect of Swelling on SIPA Irradiation Creep—V. A. Borodin, p. 15.
The Effect of Internal Stress Fields on Fracture of Structural Materials under Irradiation—V. M. Manichev and V. A. Borodin, p. 33.

The Influence of Silicon and Phosphorus Additions on Neutron Induced Microstructural Evolution of Fe-Cr-Ni Ternary Alloys at 646-703 K—H. WATANABE, F. A. GARNER, T. MUROGA, AND N. YOSHIDA, p. 76.

Quantification of Defect-Solute Coupling from Inverse-Kirkendall Segregation—E. P. SIMONEN, L. A. CHARLOT, AND S. M. BRUEMMER, p. 117.

Low Activation Brazing Joint of Dispersion-Strengthened Copper—S. CHEN AND B. A. CHIN, p. 132.

Microstructure Investigation of Cr and Cr Alloys Irradiated with Heavy Ions—V. V. BRYK, V. N. VOYEVODIN, L. M. NEKLYUDOV, AND A. N. RAKITSKIJ, p. 146.

Void Swelling in Binary Fe-Cr Alloys at 200 dpa—D. S. GELLES, p. 163.

Experimental Evidence of Several Contributions to the Radiation Damage in Ferritic Alloys—M. AKAMATSU, I. C. VAN DUYSSEN, P. PAREIGE, AND P. AUGER, p. 192.

Tensile Behavior and Microstructure of Neutron-Irradiated Mo-5% Re Alloy—A. HASEGAWA, K. ABE, M. SATOU, AND C. NAMBA, p. 259.

A Mechanistic Model for Radiation-Induced Crystallization and Amorphization in U3Si—I. REST, p. 308.

