Foreword

The International Symposium on Automation in Fatigue and Fracture: Testing and Analysis, was held 15–17 June 1992 in Paris, France. It was cosponsored by the: Societe Francaise de Metallurgie et de Materiaux (SF2M), Committee on Fatigue, France; and American Society for Testing and Materials (ASTM), Committee E9 on Fatigue, USA.

Also offering valuable cooperation were the: Society of Automotive Engineers (SAE); Fatigue Design and Evaluation Committee, USA; Engineering Integrity Society (EIS), UK; and National Research Institute for Metals (NRIM), Japan.

The Symposium was an extension of the series of International Spring Meetings of SF2M. This publication is a result of this symposium. Claude Amzallag, IRSID-Unieux, France, is the editor.

Acknowledgment

The Organizing Committee, who helped develop the program and provide session chairmen and reviewers, are acknowledged for their assistance. Ms. Gail Leese, (PACCAR Technical Center, USA) and Dr. Dale Wilson (Tennessee Technical University, USA) helped shape the symposium, provide reviewers, and graciously offered their time in reviewing papers.

In addition to the help of the technologists cited above, the editor wishes to express gratitude to the staff members of SF2M and ASTM, particularly Yves Franchot, SF2M, who handled the administration of the symposium.
Contents

Overview 1

AUTOMATED TESTING SYSTEMS AND METHODS

A Historical Overview and Discussion of Computer-Aided Materials Testing—A. A. BRAUN 5

General Purpose Software for Fatigue Testing—S. DHARMAVASAN AND S. M. C. PEERS 18

A Sampling of Mechanical Test Automation Methodologies Used in a Basic Research Laboratory—G. A. HARTMAN, N. E. ASHBAUGH, AND D. J. BUCHANAN 36

Computer Applications in Full-Scale Aircraft Fatigue Tests—R. L. HEWITT AND R. S. RUTLEDGE 51

Microprocessor-Based Controller for Actuators in Structural Testing—R. SUNDER AND C. S. VENKATESH 70

An Automated Image Processing System for the Measurement of Short Fatigue Cracks at Room and Elevated Temperatures—L. YI, R. A. SMITH, AND L. GRABOWSKI 84

Computer-Aided Laser Interferometry for Fracture Testing—A. K. MAJI AND J. WANG 95

Automated Data Acquisition and Data Bank Storage of Mechanical Test Data: An Integrated Approach—G. BRACKE, J. BRESSERS, M. STEEN, AND H. H. OVER 108

Sampling Rate Effects in Automated Fatigue Crack Growth Rate Testing—J. K. DONALD 124

Procedure for Automated Tests of Fatigue Crack Propagation—V. BACHMANN, G. MARCI, AND P. SENGBUSCH 146


FATIGUE UNDER VARIABLE AMPLITUDE LOADING

The Significance of Variable Amplitude Fatigue Testing—D. SCHÜTZ AND P. HEULER

Spectrum Fatigue Life Assessment of Notched Specimens Using a Fracture Mechanics Based Approach—M. VORMWALD, P. HEULER, AND C. KRAE

Spectrum Fatigue Testing Using Dedicated Software—G. MARQUIS AND J. SOLIN

A Computerized Variable Amplitude Fatigue Crack Growth Rate Test Control System—J. A. JOYCE AND W. WRIGHT

Automated Fatigue Test System for Spectrum Loading Simulation of Railroad Rail Cracks—D. A. JABLONSKI


A Fatigue Crack Propagation Model Under Variable Loading—J. GERALD AND A. MENEGAZZI

Sensitivity of Equivalent Load Crack Propagation Life Assessment to Cycle-Counting Technique—E. LE PAUTREMAT, M. OLAGNON, AND A. BIGNONNET

FATIGUE AND FRACTURE ANALYSIS AND SIMULATION


Neuber-Based Life Prediction Procedure for Multiaxially Loaded Components—D. HANSCHMANN, E. MALDFELD, AND H. NOWACK

Fatigue Test Methods and Damage Models Used by the SNCF for Railway Vehicle Structures—A. LELUAN

Load Simulation Test System for Agricultural Tractors—K. NISHIZAKI

Applying Contemporary Life Assessment Techniques to the Evaluation of Urban Bus Structures—M. M. DE FREITAS, N. M. MAIA, J. MONTALVÃO E SILVA, AND J. D. SILVA
Fatigue and Fracture Analysis of Type 316L Thin-Walled Piping for Heavy Water Reactors: Crack Growth Prediction Over 60 Years (With and Without Stratification) and Flawed Pipe Testing—A. B. POOLE 443

A Rule-Based System for Estimating High-Temperature Fatigue Life—P. J. BONACUSE 466

Optimum Fracture Control Plan for Gas Turbine Engine Components—T. LASSEN 477

APPLICATIONS AND PREDICTION METHODS

Prediction of the Fatigue Life of Mechanical Structures—J.-F. FLAVENOT 493


Using Maximum Likelihood Techniques in Evaluating Fatigue Crack Growth Curves—S. E. CUNNINGHAM AND C. G. ANNIS, JR. 531

Advances in Hysteresis Loop Analysis and Interpretation by Low-Cycle Fatigue Test Computerization—G. DEGALLAIX, P. HOTTEBART, A. SEDDOUKI, AND S. DEGALLAIX 546

Thermal-Mechanical Fatigue Testing—A. KOSTER, E. FLEURY, E. VASSEUR, AND L. REMY 563

Measurement of Transformation Strain During Fatigue Testing—R. W. NEU AND H. SEHITOGLU 581

An Automatic Ultrasonic Fatigue Testing System for Studying Low Crack Growth at Room and High Temperatures—T. WU, J. NI, AND C. BATHIAS 598

Database for Aluminum Fatigue Design—D. KOSTEAS, R. ONDRA, AND W. W. SANDERS, JR. 608

Material Data Banks: Design and Use, an Example in the Automotive Industry—A. DIBOINE 622

Hypertext and Expert Systems Application in Fatigue Assessment and Advice—C. A. McMAHON, S. BANERJEE, J. H. SIMS WILLIAMS, AND J. DEVLUKIA 634

A Software System for the Enhancement of Laboratory Calculations—A. GALTIER 648

Author Index 657

Subject Index 659