Polymer Modified Asphalt Binders

Kenneth R. Wardlaw and Scott Shuler, editors

ASTM Publication Code Number (PCN)
04-011080-08

ASTM
1916 Race Street
Philadelphia, PA 19103
Foreword

This publication, *Polymer Modified Asphalt Binders*, contains papers presented at the symposium of the same name, held in San Antonio, TX on 4 Dec. 1990. The symposium was sponsored by ASTM Committee D-4 on Road and Paving Materials. Kenneth R. Wardlaw of Exxon Chemical Co. in Alexandria, VA and Scott Shuler of the Asphalt Institute in Lexington, KY presided as symposium co-chairmen and are editors of the resulting publication.
Contents

Overview—KENNETH R. WARDLAW AND SCOTT SHULER

Rheological Properties of Polymer-Modified Emulsion Residue—D. A. ANDERSON, D. W. CHRISTENSEN, R. ROQUE, AND R. A. ROBYAK

The Determination of SBS, EVA and APP Polymers in Modified Bitumens—F. S. CHOQUET AND E. J. ISTA

Influence of Binder Theology on Rut Resistance of Polymer Modified and Unmodified Hot Mix Asphalt—M. G. BOULDIN AND J. H. COLLINS

An Evaluation of Heavy Duty Binders in the Laboratory—M. MAYAMA, M. YOSHINO, AND K. HASEGAWA

Laboratory and Field Studies of Polyolefin and Latex Modifiers for Asphalt Mixtures—D. E. NEWCOMB, M. STRoup-GARDINER, AND J. A. EPPS

Polymer Modified Hot Mix Asphalt—Oregon Experience—D. F. ROGGE, R. L. TERRELL, AND A. J. GEORGE

Performance of Polymer Modified Asphalt Mixes in Kentucky—L. J. FLECKENSTEIN, K. MAHBOUB, AND D. L. ALLEN

Analysis of the Influence of Low Density Polyethylene Modification (Novophalt) of Asphalt Concrete on Mixture Shear Strength and Creep Deformation Potential—D. N. LITTLE

Field Trials with Polymer Modified Asphalts in Saudi Arabia—M. AL DHALAAN, F. BALGHUNAIM, I. AL DHUBAIB, AND A. S. NOURELDIN
The Determination of Bitumen and Recycled Tire Rubber Content in Rubberized Asphalt Road Mixtures—E. J. ISTA AND F. S. CHOQUET 224

Comparative Performance of Polymer Modified Hot Mix and the Practical Problems of Ensuring Performance—W. P. F. HEATHER 235

Thermo-Oxidative Degradation of Polymer Modified Bitumen—S. LINDE AND U. JOHANSSON 244

Viscosity Measurements of Polymer Modified Asphalts—B. P. SCHWAGER 254

SBS Polymer Modified Asphalt Binder and its Implications on Overlay Design—A. SRIVASTAVA, P. C. HOPMAN, AND A. A. A. MOLENAAR 309

Polymer Modified Asphalt Concrete for Environmental Liners—R. L. TERREL 330

Author Index 357

Subject Index 359
Overview

The use of asphalt as a binder in the construction of asphalt pavements had its beginning in the early part of this century. The quality of the asphalt binder varied due to the crude oil sources and the refining processes which often caused considerable distress to the engineer. Asphalt technology attempted to solve many of the problems by establishing criteria for fewer grades from which to make a selection. Tests were developed which have been in use for many years and have served the industry well. Like all things, asphalt and asphalt technology has had to change to keep pace with a dynamic and ever changing transportation system that is placing severe demands upon the structural capability of asphalt pavements. Asphalt binder, supplied for the construction of highways, is being modified to meet these demands.

Asphalt binder is a thermoplastic liquid which will behave as an elastic solid at low service temperatures or during rapid loading. At high temperatures or slow loading, it behaves as a viscous liquid. This classical dichotomy creates a need to improve the performance of an asphalt binder to minimize the stress cracking that occurs at low temperatures and the plastic deformation at high temperatures. Daily temperature changes in most areas of the world have significant effects upon most asphalt pavements. Changes in temperatures and traffic loadings during the life of a pavement makes the design and the selection of materials to resist these stresses extremely difficult, as well as impractical.

Asphalt technologists blend asphalt binders at the refinery to meet the specification requirements of the engineer. However, the current asphalt binder being supplied has not, in many cases, performed as expected. Some engineers believe that asphalt “is not what it used to be.” This claim is often made when performance falls short of expectations. However, it is probable that the asphalt which has had a good performance history in the past does not have the engineering properties to meet the demands placed on it by traffic stress of today. New techniques for the production of hot mix asphalt, that is, drum mix plants with bag house environmental control systems, can on occasion produce unexpected results.

Modifying asphalt binders is not new, but to meet the required performance standards for the pavements of today, it appears to be a logical, practical, and economical approach. The economics of a longer performing asphalt pavement does indeed serve the interests of the community as a whole.

Many types of polymers are used to change asphalt binders to achieve a wider performance range for asphalt bound pavement materials. There has been a proliferation of many types of polymers in the last 10 years for use in asphalt binder modification. This has created a need for a new understanding of asphalt binders and asphalt pavement behavior. We have generally used empirical methods to explain asphalt pavement performance and this has been quite adequate for most conditions. However, polymer modified asphalt binders requires the development of new technology as the conventional asphalt test procedures are proving to be inadequate. Many polymer modified asphalt binders tend to behave more as a polymer rather than an asphalt. With the advent of performance based specifications from the Strategic Highway Research Program (SHRP) it will be possible to “design” asphalt binders to meet specific pavement requirements. This opportunity has never been closer to reality. In response to these changes in the industry, this symposium, Polymer Modified Asphalt Binders, was organized
to provide a forum for the research activities currently underway in this area of asphalt materials.

The many types of polymers available for asphalt binder modification has created considerable confusion for the user agencies wishing to specify modified asphalt binders. An attempt to classify the various polymers under a generic chemical terminology is being made by ASTM. SHRP will have a long range effect on asphalt binders. It is still to be determined how many grades of asphalt binders now being used will require some form of modification for the construction of asphalt pavements.

While this is not the first, nor will it be the last symposium on polymer modified binders, it is believed that the papers presented at San Antonio and contained in this publication will give the reader a feeling for the challenge that lies ahead for the engineer and the asphalt technologist. The authors were requested to use the generic terms for the various polymers used in proprietary processes, but some trade names do appear in the text. The papers discuss the use of elastomers such as styrene block copolymers, latex rubber, and various plastomers that include ethylene vinyl acetate (EVA) and polyethylene.

The papers are basically divided into two categories: (1) laboratory studies of polymer modified asphalt binders for hot mix asphalt, and (2) emulsions and full scale field experiments which explore construction aspects of polymer modified asphalt pavements.

It is believed that the Symposium and this publication will help to explain the differences between modified and nonmodified asphalt binder systems. A more fundamental basis for new technology based on polymer modified asphalt binders must be developed. Without this fundamental science many years will be required to develop the empirical basis for judging the adequacy of pavements constructed with polymer modified asphalt binders.

Kenneth R. Wardlaw
Exxon Chemical Company

Scott Shuler
The Asphalt Institute