You are being redirected because this document is part of your ASTM Compass® subscription.
    This document is part of your ASTM Compass® subscription.

    TR2-EB

    Developmental Pillars of Increased Autonomy for Aircraft Systems

    Published: 2020


      Format Pages Price  
    PDF 45 $68.00   ADD TO CART

    Description

    Increased automation for aircraft systems holds the promise to increase safety, precision, and availability for manned and unmanned aircraft. Specifically, established aviation segments, such as general aviation and light sport, could utilize increased automation to make significant progress towards solving safety and piloting difficulties that have plagued them for some time. Further, many emerging market segments, such as urban air mobility and small unmanned (e.g., small parcel delivery with drones) have a strong financial incentive to develop increased automation to relieve the pilot workload, and/or replace in-the-loop pilots for most situations. Before these advances can safely be made, automation technology must be shown to be reliable, available, accurate, and correct within acceptable limits based on the level of risk these functions may create. However since inclusion of these types of systems is largely unprecedented at this level of aviation, what constitutes these required traits (and at what level they must be proven to) requires development as well. Progress in this domain will likely be captured and disseminated in the form of best practices and technical standards created with collaboration from regulatory and industry groups. This work intends to inform those standards producers, along with the system designers, with the goal of facilitating growth in aviation systems toward safe, methodical, and robust inclusion of these new technologies. Produced by members of the manned and unmanned small aircraft community, represented by ASTM task group AC 377, this work strives to suggest and describe certain fundamental principles, or “pillars”, of complex aviation systems development, which are applicable to the design and architectural development of increased automation for aviation systems.