Advanced Triaxial Testing of Soil and Rock

Donaghe/Chaney/Silver
editors

STP 977

ASTM
Advanced Triaxial Testing of Soil and Rock

Robert T. Donaghe, Ronald C. Chaney, and Marshall L. Silver, editors

ASTM
1916 Race Street
Philadelphia, PA 19103
Foreword

The symposium on Advanced Triaxial Testing of Soil and Rock was presented at Louisville, Kentucky on 19–20 June 1986 sponsored by ASTM Committee D-18 on Soil and Rock. Robert T. Donaghe, U.S. Army Corps of Engineers, Ronald C. Chaney, Humboldt State University, and Marshall L. Silver, University of Illinois, served as chairmen of the symposium and editors of the resulting publication.
Contents

Overview

Equipment

<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>State-of-the-Art Paper</td>
<td>FUMIO TATSUOKA</td>
<td>7</td>
</tr>
<tr>
<td>Some Recent Developments in Triaxial Testing Systems for Cohesionless Soils</td>
<td>HAROLD W. OLSEN, ROGER H. MORIN, AND ROGER W. NICHOLS</td>
<td>68</td>
</tr>
<tr>
<td>Flow Pump Applications in Triaxial Testing</td>
<td>BRUCE K. MENZIES</td>
<td>82</td>
</tr>
<tr>
<td>An Automated Triaxial Testing System</td>
<td>MALCOLM REEVES</td>
<td>107</td>
</tr>
<tr>
<td>Microcomputer-Based Data Acquisition Systems for Triaxial Testing of Soft Yielding Rocks</td>
<td>Y. P. VAID, D. NEGUSSEY, AND M. ZERGOUN</td>
<td>119</td>
</tr>
<tr>
<td>A Stress- and Strain-Controlled Monotonic and Cyclic Loading System</td>
<td>JEAN-MICHEL DUPAS, ALAIN PECKER, PIERRE BOZETTO, AND JEAN-JACQUES FRY</td>
<td>132</td>
</tr>
<tr>
<td>A 300-mm-Diameter Triaxial Cell with a Double Measuring Device</td>
<td>FRED A. DONATH, JON T. HOLDER, AND LESTER S. FRUTH</td>
<td>143</td>
</tr>
<tr>
<td>Simultaneous Hydraulic/Physical Parameter Measurement on Rock Specimens Subjected to Triaxial Conditions</td>
<td>JAMES R. BALESHTA AND MAURICE B. DUSSEAUT</td>
<td>155</td>
</tr>
<tr>
<td>Triaxial Testing of Intact Salt Rocks: Pressure Control, Pressure Systems, Cell and Frame Design</td>
<td>JOHN F. PETERS AND DANIEL A. LEAVELL</td>
<td>169</td>
</tr>
<tr>
<td>Relationship Between Tensile and Compressive Strengths of Compacted Soils</td>
<td>SERGE LEROUEIL, FRANÇOIS TAVENAS, PIERRE LA ROCHELLE, AND MICHEL TREMBLAY</td>
<td>189</td>
</tr>
<tr>
<td>Influence of Filter Paper and Leakage on Triaxial Testing</td>
<td>SERGE LEROUEIL, FRANÇOIS TAVENAS, PIERRE LA ROCHELLE, AND MICHEL TREMBLAY</td>
<td>189</td>
</tr>
</tbody>
</table>

TEST METHODS

State-of-the-Art Paper
A Reevaluation of Conventional Triaxial Test Methods—GUALTIERO BALDI, DAVID W. HIGHT, AND GREGORY E. THOMAS 219

State-of-the-Art Paper
Triaxial Testing Methods for Soils—SUZANNE LACASSE AND TORALV BERRE 264

Triaxial Testing of Granular Soil Under Elevated Cell Pressure—JEAN LOUIS COLLIAT-DANGUS, JACQUES DESRUES, AND PIERRE FORAY 290

Consolidated Drained Triaxial Testing of Piedmont Residual Soil—PHILIP C. LAMBE AND WILLIAM T. HEARTZ 311

Triaxial Relaxation Tests on a Soft Clay—VINCENT SILVESTRI, MICHEL SOULIÉ, ZIAD TOUCHAN, AND BERNARD FAY 321

Triaxial Testing of Marine Sediments with High Gas Contents—GRETCHEN RAU AND RONALD C. CHANEY 338

Results and Interpretation of Multistage Triaxial Compression Tests—MAURIZIO SORANZO 353

Application of Multistage Triaxial Test to Kuwaiti Soils—HAMED S. SAEEDY AND MOHAMMED A. MOLLAH 363

Triaxial Testing of Weak Rocks Including the Use of Triaxial Extension Tests—PETER J. MILLAR AND DAVID R. MURRAY 376

Triaxial Permeability and Strength Testing of Contaminated Soils—JEFFREY C. EVANS AND HSAI-YANG FANG 387

Preparation of Reconstituted Sand Specimens—Y. P. VAID AND D. NEGUSSEY 405

TEST INTERPRETATION AND ERRORS

State-of-the-Art Paper
Triaxial Testing of Saturated Cohesive Soils—JOHN T. GERMAINE AND CHARLES C. LADD 421

Determination of Undrained Shear Strength of Low Plasticity Clays—JOHN F. PETERS 460
Cyclic Triaxial Strain-Controlled Testing of Liquefiable Sands—
MLADEN VUCETIC AND RICARDO DOBRY 475

Triaxial Test for Embankment Dams: Interpretation and Validity—
HEDI DENDANI, ETIENNE FLAVIGNY, AND JEAN JACQUES FRY 486

Compression and Shear Deformation of Soil Under Wide-Ranging Confining Pressure—RYOSUKE KITAMURA AND MOTOHISA HARUYAMA 501

Interpretation of Triaxial Compression Test Results on Partially Saturated Soils—
RICHARD W. PETERSON 512

New Concept of Effective Stress in Unsaturated Soil and Its Proving Test—
DAIZO KARUBE 539

Probabilistic Characterization of Shear Strength Parameters Using Triaxial Test Data—PINNADUWA H. S. W. KULATILAKE 553

Interpretation of Triaxial Test Results of Cohesionless Soils: A New Model—
GILBERT Y. BALADI AND THOMAS T. H. WU 567

Pore-Pressure Distributions in Constant Strain-Rate Triaxial Tests—
WILLIAM Z. SAVAGE 582

Pore Pressure Response of an Undisturbed and Reconstituted Anglian Till in Undrained Triaxial Compression—JOHN ANTHONY LITTLE 592

Shear Band Formation in Triaxial and Plane Strain Tests—JOHN F. PETERS, POUL V. LADE, AND ANDERS BRO 604

Effects of Sampling Disturbance on Shear Strength of Glacial Till and Compacted Fill—DANIEL P. DIETZLER, DEVIN A. MOOSE, AND JEFFREY C. SCHUH 628

Influence of Specimen Preparation Techniques and Testing Procedures on Undrained Steady State Shear Strength—NORMAN D. DENNIS 642

Triaxial Compressive and Extension Strength of Sand Affected by Strength Anisotropy and Sample Slenderness—WOON-KWAN LAM AND FUMIO TATSUOKA 655

The Influence of Filter Strip Shape on Consolidated Undrained Triaxial Extension Test Results—TOSHIYUKI MITACHI, YUKIHIRO KOHATA, AND YUTAKA KUDOH 667

The Effect of End Restraint on Volume Change and Particle Breakage of Sands in Triaxial Tests—TZOU-SHIN UENG, YEONG-MING TZOU, AND CHUNG-JUNG LEE 679

Effects of End Conditions on Triaxial Compressive Strength for Cohesionless Soil—SATOSHI GOTO AND FUMIO TATSUOKA 692
Effects of Height-to-Diameter Ratio in Triaxial Specimens on the Behavior of Cross-Anisotropic Sand—Poul V. Lade and Uzair Wasif 706

Observational Approach to Membrane and Area Corrections in Triaxial Tests—Pierre La Rochelle, S. Leroueil, B. Trak, L. Blais-Leroux, and F. Tavernas 715

Stress Path Considerations in Multistage Triaxial Testing—Mark R. Schoenemann and Marvin R. Pyles 732

NEW TEST VARIETIES

State-of-the-Art Paper
Cubical Devices: Versatility and Constraints—J. R. F. Arthur 743

State-of-the-Art Paper
Hollow Cylinder Torsional Devices: Their Advantages and Limitations—Adel S. Saada 766

Discussion 790

The Cambridge True Triaxial Apparatus—David W. Airey and David M. Wood 796

A True Triaxial Cell for Soil and Rock—Paul Michelis 806

A True Triaxial Testing Cell—Vincent Silvestri, Raymond N. Yong, and Abdel Moshen Onsy Mohamed 819

True Triaxial Test of Rock Under Stress and Strain Rate Control—Tetsuro Esaki, Tsuyoshi Kimura, Kazuo Aoki, and Tadashi Nishida 834

A New Independent Principal Stress Control Apparatus—Akitoshi Mochizuki, Masato Mikasa, and Shinichi Takahashi 844

Special Stress Paths Along the Limit Surface of a Sand Specimen with the Use of a True Triaxial Apparatus—Jack Lanier 859

Index 871