INDUSTRIAL DUST EXPLOSIONS

Cashdollar/Hertzberg, editors

ASTM STP 958
On the cover:

(Bottom) Entrance portal of the Experimental Mine at Bruceton, Pennsylvania. Research on the explosion hazards of coal dust and methane gas has been conducted at this Bureau of Mines facility continuously since 1910 and it is now a National Historical Site.

(Second from bottom) Coal dust explosion propagating outward from the mine portal. This demonstration was conducted for the attendees of the Symposium on Industrial Dust Explosions in June 1986.

(Second from top) Explosion propagation is essentially complete as the hot fireball of combustion products expands and begins to cool.

(Top) Explosion fireball rises as a result of buoyancy forces and continues to cool.

(Photographer: K. L. Cashdollar)
INDUSTRIAL DUST EXPLOSIONS

Symposium on
Industrial Dust Explosions
sponsored by
ASTM Committee E-27 on
Hazard Potential of Chemicals

Bureau of Mines, U.S. Department
of the Interior

National Fire Protection
Association—Committee on
Explosion Protection Systems

Pittsburgh, Pennsylvania, 10–13 June 1986

ASTM SPECIAL TECHNICAL PUBLICATION 958
Kenneth L. Cashdollar, Bureau of Mines,
and Martin Hertzberg, Bureau of Mines,
editors

ASTM Publication Code Number (PCN)
04-958000-31

1916 Race Street, Philadelphia, PA 19103
Library of Congress Cataloging-in-Publication Data

Symposium on Industrial Dust Explosions (1986: Pittsburgh, Pa.)
Industrial dust explosions.

(ASTM special technical publication; 958)
"ASTM publication code number (PCN) 04-958-000-31."
Includes bibliographies and index.

TH9446.D86S96 1986 604.7 87-27066
ISBN 0-8031-0957-1

Copyright © by AMERICAN SOCIETY FOR TESTING AND MATERIALS 1987
Library of Congress Catalog Card Number: 87-27066

NOTE
The Society is not responsible, as a body, for the statements and opinions advanced in this publication.
Foreword

The Symposium on Industrial Dust Explosions was held in Pittsburgh, Pennsylvania on 10–13 June 1986. ASTM Committee E-27 on Hazard Potential of Chemicals, the Bureau of Mines, and the National Fire Protection Association—Committee on Explosion Protection Systems were the sponsors. Kenneth L. Cashdollar and Martin Hertzberg, both with the Bureau of Mines, served as symposium chairman and co-chairman, respectively, and have edited this publication. Robert P. Benedetti, National Fire Protection Association, and Thomas F. Hoppe, Ciba-Geigy Corp., were also symposium co-chairmen.
Related
ASTM Publication

Fire Safety: Science and Engineering, STP 882 (1985), 04-882000-31
A Note of Appreciation to Reviewers

The quality of the papers that appear in this publication reflects not only the obvious efforts of the authors but also the unheralded, though essential, work of the reviewers. On behalf of ASTM we acknowledge with appreciation their dedication to high professional standards and their sacrifice of time and effort.

ASTM Committee on Publications
ASTM Editorial Staff

Kathleen A. Peters
Janet R. Schroeder
Kathleen A. Greene
Bill Benzing
Contents

Overview

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Dust Explosions</td>
<td>5</td>
</tr>
<tr>
<td>Influence of Temperature and Pressure on the Explosion Characteristics of Dust/Air and Dust/Air/Inert Gas Mixtures</td>
<td>33</td>
</tr>
<tr>
<td>Thermal Autoignition Temperatures from the 1.2-L Furnace and Their Use in Evaluating the Explosion Potential of Dusts</td>
<td>45</td>
</tr>
<tr>
<td>The U.K. Approach to Dust Explosibility Assessment and Its Relevance to Explosion Prevention and Protection</td>
<td>60</td>
</tr>
<tr>
<td>Propagation of Coal Dust Explosions in Pipes</td>
<td>74</td>
</tr>
<tr>
<td>Secondary Dust Explosions</td>
<td>90</td>
</tr>
<tr>
<td>Laboratory and Mine Dust Explosion Research at the Bureau of Mines</td>
<td>107</td>
</tr>
<tr>
<td>Investigations into the Buildup and Development Conditions of Coal Dust Explosions in a 700-m Underground Gallery</td>
<td>124</td>
</tr>
<tr>
<td>Coal Dust and Gas Explosion Suppression by Barriers</td>
<td>138</td>
</tr>
<tr>
<td>Research on the Suppression of Coal Dust Explosions by Water Barriers</td>
<td>152</td>
</tr>
<tr>
<td>Preventive and Design Measures for Protection Against Dust Explosions</td>
<td>158</td>
</tr>
<tr>
<td>Review of Coal Pulverizer Fire and Explosion Incidents</td>
<td>191</td>
</tr>
</tbody>
</table>
Coal Pulverizer Explosions—RICHARD C. CARINI AND K. R. HULES 202

Coal Dust Explosions in the Cement Industry—AMIN N. ALAMEDDIN AND STEVEN J. LUZIK 217

A Sugar Dust Explosion and Some Measures to Limit Its Consequences—WILLY J. GEYSEN, RONNIE BELMANS, AND LOUIS SCHEYS 234

Recent Dust Explosion Experiences in the U.S. Grain Industry—C. WILLIAM KAUFFMAN 243

A Differentiated Approach to Sizing of Dust Explosion Vents: Influence of Ignition Source Location with Particular Reference to Large, Slender Silos—ROLF K. ECKHOFF 265

Suppression of Maize Dust Explosions—PETER E. MOORE 281

Grain Dust Probes—Calibration and Measurement—NARAYANAN RAJENDRAN 294

Ignition Probability of Hybrid Mixtures—DOUGLAS H. NAPIER AND DENVER R. ROOPCHAND 310

Determination of Metal Sparking Characteristics and the Effects on Explosive Dust Clouds—C. JAMES DAHN AND BERNADETTE N. REYES 324

Testing of Electrical Equipment for Use in Class II Hazardous Locations—RONALD C. VAICKAUSKI 333

A Brief History of Dust Explosions—HARRY C. VERAKIS AND JOHN NAGY 342

Index 351