PLASMA SPECTROSCOPY FOR THE ANALYSIS OF HAZARDOUS MATERIALS: DESIGN AND APPLICATION OF ENCLOSED PLASMA SOURCES

A symposium
sponsored by
ASTM Committee C-26
on Nuclear Fuel Cycle
New Orleans, LA, 15 Jan. 1986

ASTM SPECIAL TECHNICAL PUBLICATION 951
M. C. Edelson, Iowa State University, and
J. Leland Daniel, Pacific Northwest Laboratory
editors

ASTM Publication Code Number (PCN)
04-951000-35

1916 Race Street, Philadelphia, PA 19103
Foreword

This publication, *Plasma Spectroscopy for the Analysis of Hazardous Materials: Design and Application of Enclosed Plasma Sources*, contains papers presented at the symposium on Use and Development of Enclosed Plasma Spectroscopic Sources for the Analysis of Toxic and Radioactive Materials, which was held 15 Jan. 1986, in New Orleans, LA. The event was sponsored by ASTM Committee C-26 on Nuclear Fuel Cycle. The symposium chairman was M. C. Edelson, of Ames Laboratory, Iowa State University, who also served as editor of this publication. J. Leland Daniel, Pacific Northwest Laboratory, served as co-editor.
Related
ASTM Publications

A Note of Appreciation to Reviewers

The quality of the papers that appear in this publication reflects not only the obvious efforts of the authors but also the unheralded, though essential, work of the reviewers. On behalf of ASTM we acknowledge with appreciation their dedication to high professional standards and their sacrifice of time and effort.

ASTM Committee on Publications
ASTM Editorial Staff

Helen P. Mahy
Janet R. Schroeder
Kathleen A. Greene
William T. Benzing
Contents

Introduction 1

PRINCIPLES AND PLANNING

ICP Source Optical Emission Spectroscopy Analysis of Radioactive Materials: A View of the United Kingdom Scene—
John W. McMillan 5
Discussion 15

Glove Box Enclosed D-C Plasma Source for the Determination of Metals in Plutonium Solutions—William F. Morris 16

OPEN INSTALLATIONS

A Simplified System for Doing ICP Analysis on Radioactive Samples—J. J. McCown 35
Discussion 39

Use of an Inductively Coupled Plasma Emission Spectrometer System in a Separations Process Plant Laboratory—
John M. Hiller and Daniel H. Lawry 41
Discussion 59

Modification of an Inductively Coupled Plasma Atomic Emission Spectrometer for Analysis of Plutonium Impurities—
Glenda E. Brown 60

Design for a Contained Inductively Coupled Plasma/D-C Arc Atomic Emission Spectrometer at the Savannah River Plant—J. Todd Coleman 66

ENCLOSED SOURCES

Five Years of Plasma Emission Spectroscopy (ICP-AES) Analyses of Toxic and Radioactive Materials at the Bruyeres le Chatel Center in France—Claude Bergey, Xavier Claudon, and Fernand Thouzeau 73

The Ames Laboratory Facility for the Emission Spectroscopic Study of Alpha-Emitting Radionuclei: The Design and Operating History—Martin C. Edelson and Edward L. DeKalb 83
Adaptation of a Beckman Spectraspan VI Spectrometer to a Plutonium Glove box—ADRIAN P. LOVELL, GLENN E. BENTLEY, THOMAS K. MARSHALL, AND TERRY R. HAHN 95

SHIELDED ENCLOSURES

ICP-AES Radioactive Sample Analyses at Pacific Northwest Laboratory—CARRIE L. MATSUZAKI AND FRANK T. HARA 109
Discussion 120

The Los Alamos Facility for Inductively Coupled Plasma Atomic Emission Spectrometric Analysis of Radioactive Solutions—CHARLES T. APEL, TONY BEUGELSDIJK, DAVID GALLIMORE, WILLIAM H. MYERS, AND LYNDA FAIRES 121

HOT CELL INSTALLATIONS

Remote Inductively Coupled Plasma Atomic Emission Spectrometry at the Idaho Chemical Processing Plant—RONALD W. STONE AND FRED W. DYKES 131
Discussion 144

Development and Layout of an ICP Excitation Unit in a Hot Cell—ELISABETH MAINKA, HANS G. MÜLLER, AND JÜRGEN NEUBER 146
Discussion 155

SUMMARY

Summary 159

INDEXES

Author Index 163
Subject Index 165