Performance of Protective Clothing

Barker/Coletta

editors

ASTM STP 900
PERFORMANCE OF PROTECTIVE CLOTHING

A symposium
sponsored by
ASTM Committee F-23
on Protective Clothing
Raleigh, NC, 16–20 July 1984

ASTM SPECIAL TECHNICAL PUBLICATION 900
Roger L. Barker, North Carolina State
University, and Gerard C. Coletta,
Risk Control Services, editors

ASTM Publication Code Number (PCN)
04-900000-55

1916 Race Street, Philadelphia, PA 19103
Performance of protective clothing.

(ASTM special technical publication; 900)

"ASTM publication code number (PCN) 04-900000-55."

Papers presented at the First International Symposium on the Performance of Protective Clothing.

Includes bibliographies and index.

2. Barker, Roger L. II. Coletta, Gerard C.
3. ASTM Committee F-23 on Protective Clothing.
5. Series HD7395.C5P47 1986 687'.16 86-10706
ISBN 0-8031-0461-8

Copyright © by AMERICAN SOCIETY FOR TESTING AND MATERIALS 1986
Library of Congress Catalog Card Number: 86-10706

NOTE
The Society is not responsible, as a body, for the statements and opinions advanced in this publication.
Foreword

The papers in this publication, *Performance of Protective Clothing*, were presented at the International Symposium on the Performance of Protective Clothing, which was held in Raleigh, North Carolina, on 16–20 July 1984. The meeting was sponsored by ASTM Committee F-23 on Protective Clothing. This symposium was the first to bring together all areas of interest in the field of protective clothing for occupational exposures, and other such symposia are planned.

The symposium chairmen were Roger L. Barker, North Carolina State University School of Textiles, and Gerard C. Coletta, Risk Control Services. Both men also served as editors of this publication.
Related
ASTM Publications

ASTM Performance Standards for Textile Fabrics, 1983, 03-413083-18

ASTM Standards for Electrical Protective Equipment for Workers, 1985, 03-618085-21
A Note of Appreciation to Reviewers

The quality of the papers that appear in this publication reflects not only the obvious efforts of the authors but also the unheralded, though essential, work of the reviewers. On behalf of ASTM we acknowledge with appreciation their dedication to high professional standards and their sacrifice of time and effort.

ASTM Committee on Publications
ASTM Editorial Staff

Helen P. Mahy
Janet R. Schroeder
Kathleen A. Greene
William T. Benzing
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Permeation Resistance of Chemical Protective Clothing Materials</td>
<td></td>
</tr>
<tr>
<td>Comparison of Two Methods Used to Measure Permeation of Glove Materials by a Complex Organic Mixture—Stephen L. Davis, Charles E. Feigley, and George A. Dwiggins</td>
<td>7</td>
</tr>
<tr>
<td>Use of Infrared Spectroscopy in Permeation Tests—Jimmy L. Perkins and Michael C. Ridge</td>
<td>22</td>
</tr>
<tr>
<td>A Proposed Basis for Characterizing and Comparing the Permeation Resistance of Chemical Protective Clothing Materials—Mark W. Spence</td>
<td>32</td>
</tr>
<tr>
<td>Test Method for Evaluating Adsorptive Fabrics—Dirk M. Baars, Dana B. Eagles, and Jeffrey A. Emond</td>
<td>39</td>
</tr>
<tr>
<td>How Protective Is Protective Clothing?—Norman W. Henry III</td>
<td>51</td>
</tr>
<tr>
<td>Testing of Candidate Glove Materials Against Metal Cutting Fluids—Krister Forsberg, Knut G. Olsson, and Björn Carlmark</td>
<td>59</td>
</tr>
<tr>
<td>Experiences from Developing a Data Base on the Protective Effects Against Chemicals of Gloves Made from Rubber and Plastic Materials—Gunn Mellström</td>
<td>67</td>
</tr>
<tr>
<td>Influence of Film Thickness on the Permeation Resistance Properties of Unsupported Glove Films—C. Nelson Schlatter and Drew J. Miller</td>
<td>75</td>
</tr>
<tr>
<td>Protective Clothing Permeation Testing: Calculations and Presentation of Data—Joseph E. Winter</td>
<td>82</td>
</tr>
</tbody>
</table>
Resistence to Pesticides—Field Performance and Cleaning Procedures

Protective Clothing and the Agricultural Worker—ALAN P. NIELSEN AND RICHARD V. MORASKI

California Pesticide Applicators’ Attitudes and Practices Regarding the Use and Care of Protective Clothing—MARGARET H. RUCKER, KAYE M. MCGEE, AND TATYANA CHORDAS

Effectiveness of Selected Work Fabrics as Barriers to Pesticide Penetration—DONNA H. BRANSON, GEORGE S. AYERS, AND MAUREEN S. HENRY

Efficiency of Protective Clothing for Pesticide Spraying—GLYN A. LLOYD

Fabric Parameters and Pesticide Characteristics That Impact on Dermal Exposure of Applicators—JOAN M. LAUGHLIN, CAROL B. EASLEY, ROGER E. GOLD, AND ROBERT M. HILL

Effects of Barrier Finishes on Aerosol Spray Penetration and Comfort of Woven and Disposable Nonwoven Fabrics for Protective Clothing—NANCY E. HOBBS, BILLIE G. OAKLAND, AND MELVIN D. HURWITZ

Effect of Laundering Procedures and Functional Finishes on Removal of Insecticides Selected from Three Chemical Classes—JULIE L. KEASCHALL, JOAN M. LAUGHLIN, AND ROGER E. GOLD

Effect of Functional Finish Barriers on Pesticide Penetration—KAREN K. LEONAS AND JACQUELYN O. DEJONGE

Distribution of Malathion and Methyl Parathion on Cotton/Polyester Unfinished and Durable-Press Fabrics Before and After Laundering as Determined by Electron Microscopy—S. KAY OBENDORF AND CAMILLE M. SOLBRIG

Risk Assessment of Chemical Exposure Hazards in Selecting Protective Clothing

Risk Assessment of Chemical Exposure Hazards in the Use of Chemical Protective Clothing—An Overview—S. ZACK MANSDOFR
Bioassay for Testing Protective Glove Performance Against Skin Absorption of Organic Solvents—Anders Boman and Jan E. Wahlberg

Permeation of Chemicals Through the Skin—Arthur D. Schwope

Managing the Selection and Use of Chemical Protective Clothing—Gerard C. Coletta and Mark W. Spence

Selection of Chemical Protective Clothing Using Permeation and Toxicity Data—Kristor Forsberg

Chemical Protective Clothing Field Evaluation Methods—Stephen P. Berardinelli and Michael Roder

Testing the Chemical Resistance of Seams, Closures, and Fully Encapsulated Suits

Evaluation of Chemical Protective Garment Seams and Closures for Resistance to Liquid Penetration—Stephen P. Berardinelli and Len Cottingham

Testing Fully Encapsulated Chemical Suits in a Simulated Work Environment—Charles E. Garland, Lynn E. Goldstein, and Campbell Cary

Survey of Use and Maintenance Procedures for Chemical Protective Total Encapsulation Garments—Jeffrey A. Moore

Polychlorinated Biphenyl Decontamination of Fire Fighter Turnout Gear—Karl C. Ashley

Laboratory Measurement of Thermal Protective Performance

A Critical Appraisal of Test Methods for Thermal Protective Clothing Fabrics—Barry N. Hoschke, Barry V. Holcombe, and A. Mariette Plante

Do Test Methods Yield Meaningful Performance Specifications?—Barry V. Holcombe and Barry N. Hoschke

Protection Offered by Lightweight Clothing Materials to the Heat of a Fire—Meredith M. Schoppee, Judith M. Welsford, and Norman J. Abbott
Predicting the Thermal Protective Performance of Heat-Protective Fabrics from Basic Properties—ITZHAK SHALEV AND ROGER L. BARKER 358

EVALUATING MATERIALS FOR THERMAL PROTECTIVE CLOTHING

Protective Performance of Polybenzimidazole-Blend Fabrics—RANDALL E. BOUCHILLON 389

The Contribution of Wool to Improving the Safety of Workers Against Flames and Molten Metal Hazards—LADO BENISEK, G. KEITH EDMONDSON, PARVEZ MEHTA, AND W. ALDEN PHILLIPS 405

Thermal Insulative Performance of Single-Layer and Multiple-Layer Fabric Assemblies—WILLIAM F. BAITINGER AND LUDMILLA KONOPASEK 421

Advances in Flame-Retardant Safety Apparel—VLADIMIR MISHCHUTIN AND DAVID BROWN 438

Performance of Protective Clothing: Development and Testing of Asbestos Substitutes—BAL DIXIT 446

CLOTHING SYSTEMS FOR INDUSTRIAL AND FIRE-FIGHTING APPLICATIONS

Some Characteristics of Fabrics for Heat Protective Garments—JOHN F. KRASNY 463

A Method for Testing Fabrics with Molten Metals—PHILIP S. JAYNES 475

Functional Integration of Fire Fighters’ Protective Clothing—JAMES H. VEGHTE 487

U.S. Navy Protective Clothing Program—NORMAN F. AUDET AND KENNETH J. SPINDOLA 497
HEAT STRESS, FIT TESTING, AND OTHER PERFORMANCE REQUIREMENTS FOR PROTECTIVE CLOTHING

Efficacy of Heat Exchange by Use of a Wettable Cover over Chemical Protective Garments—RICHARD R. GONZALEZ, JOHN R. BRECKENRIDGE, CLEMENT A. LEVELL, MARGARET A. KOLKA, AND KENT B. PANDOLF 515

A Dynamically Insulated Heat-Protective Clothing Assembly—JOHN DAVIES 535

Anthropometric Fit Testing and Evaluation—JOHN T. MCCONVILLE 556

Anthropometric Methods for Improving Protection—KATHLEEN M. ROBINETTE 569

Anthropometric Sizing and Fit Testing of a Single Battledress Uniform for U.S. Army Men and Women—CLAIRE C. GORDON 581

Incendiary Behavior of Electrostatic Spark Discharges from Human Beings—NORMAN WILSON 593

| Summary | 607 |
|__________|__________|

INDEXES

Author Index 621

Subject Index 623