The Use of Small-Scale Specimens for Testing Irradiated Material
The Use of Small-Scale Specimens for Testing Irradiated Material

A symposium sponsored by
ASTM Committee E-10
on Nuclear Technology and Applications
Albuquerque, N.M., 23 Sept. 1983

ASTM SPECIAL TECHNICAL PUBLICATION 888
W. R. Corwin, Oak Ridge National Laboratory,
and G. E. Lucas, University of California – Santa Barbara, editors

ASTM Publication Code Number (PCN)
04-888000-35

1916 Race Street, Philadelphia, Pa. 19103
The Use of small-scale specimens for testing irradiated material.

Includes bibliographies and index.

TA418.6.U84 1986 620.1′1228 85-27487

Copyright © by AMERICAN SOCIETY FOR TESTING AND MATERIALS 1986
Library of Congress Catalog Card Number: 85-27487

NOTE
The Society is not responsible, as a body, for the statements and opinions advanced in this publication.

Printed in Baltimore, Md.
February 1986
Foreword

The ASTM Symposium on The Use of Nonstandard Subsized Specimens for Irradiated Testing was held in Albuquerque, New Mexico, on 23 September 1983. Its sponsor was ASTM Committee E-10 on Nuclear Technology and Applications. W. R. Corwin, Oak Ridge National Laboratory, and G. E. Lucas, University of California - Santa Barbara, served as symposium chairmen and have edited this publication.

The title of this volume has been changed slightly from that of the symposium.
Related
ASTM Publications

Effects of Radiation on Materials—12th International Symposium, STP 870 (1985), 04-870000-35

Zirconium in the Nuclear Industry: Sixth International Symposium, STP 824 (1984), 04-824000-35

Creep of Zirconium Alloys in Nuclear Reactors, STP 815 (1983), 04-815000-35

Status of USA Nuclear Reactor Pressure Vessel Surveillance for Radiation Effects, STP 784 (1982), 04-784000-35

Irradiation Effects on Structural Alloys for Nuclear Reactor Applications, STP 484 (1971), 04-484000-35
A Note of Appreciation to Reviewers

The quality of the papers that appear in this publication reflects not only the obvious efforts of the authors but also the unheralded, though essential, work of the reviewers. On behalf of ASTM we acknowledge with appreciation their dedication to high professional standards and their sacrifice of time and effort.

ASTM Committee on Publications
ASTM Editorial Staff

Allan S. Kleinberg
Janet R. Schroeder
Kathleen A. Greene
Bill Benzing
Contents

Introduction
1

Strength and Ductility

<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use of the Disk Bend Test to Assess Irradiation Performance of Structural Alloys</td>
<td>M. L. Hamilton and F. H. Huang</td>
<td>5</td>
</tr>
<tr>
<td>Miniaturized Disk Bend Test Technique Development and Application</td>
<td>M. P. Manahan, A. E. Browning, A. S. Argon, and O. K. Harling</td>
<td>17</td>
</tr>
<tr>
<td>The MIT Miniaturized Disk Bend Test</td>
<td>O. K. Harling, M. Lee, D-S Sohn, G. Kohse, and C. W. Lau</td>
<td>50</td>
</tr>
<tr>
<td>Disk-Bend Ductility Tests for Irradiated Materials</td>
<td>R. L. Klueh and D. N. Braski</td>
<td>66</td>
</tr>
<tr>
<td>General Discussion: Miniaturized Disk Bend Test</td>
<td></td>
<td>83</td>
</tr>
<tr>
<td>Development of Small Punch Tests for Ductile-Brittle Transition</td>
<td>J.-M. Baik, J. Kameda, and O. Buck</td>
<td>92</td>
</tr>
<tr>
<td>Temperature Measurement of Temper Embrittled Ni-Cr Steels</td>
<td></td>
<td>110</td>
</tr>
<tr>
<td>Shear Punch and Microhardness Tests for Strength and Ductility</td>
<td>G. E. Lucas, G. R. Odette, and J. W. Scheckherd</td>
<td>112</td>
</tr>
<tr>
<td>Measurements</td>
<td></td>
<td>139</td>
</tr>
<tr>
<td>Low-Load Microhardness Changes in 14-MeV Neutron Irradiated Copper Alloys</td>
<td>S. J. Zinkle and G. L. Kulcinski</td>
<td>141</td>
</tr>
<tr>
<td>Discussion</td>
<td></td>
<td>159</td>
</tr>
</tbody>
</table>
Effects of Specimen Thickness and Grain Size on the Mechanical Properties of Types 304 and 316 Austenitic Stainless Steel—
N. IGATA, K. MIYAHARA, T. UDA, AND S. ASADA

Failure Strain for Irradiated Zircaloy Based on Subsized Specimen Testing and Analysis—R. B. ADAMSON, S. B. WISNER,
R. P. TUCKER, AND R. A. RAND

Wire Tensile Testing for Radiation-Hardening Experiments—
E. R. BRADLEY AND R. H. JONES

Design and Use of Nonstandard Tensile Specimens for Irradiated Materials Testing—N. F. PANAYOTOU, S. D. ATKIN,
R. J. PUIGH, AND B. A. CHIN

Comparison of Mechanical Properties in Thin Specimens of Stainless Steel with Bulk Material Behavior—D. G. RICKERBY, P. FENICI,
P. JUNG, G. PIATTI, AND P. SCHILLER

Post-Irradiation Creep Properties of Cold-Worked 316 Stainless Steel As Measured with Small Creep Specimens—
W. VANDERMEULEN, M. SNYKERS, AND PH. VAN ASBROECK

Fatigue and Fracture

Miniature Center-Cracked-Tension Specimen for Fatigue Crack Growth Testing—A. M. ERMI AND L. A. JAMES

Use of Subsize Fatigue Specimens for Reactor Irradiation Testing—
K. C. LIU AND M. L. GROSSBECK

Use of Subsized Specimens for Evaluating the Fracture Toughness of Irradiated Materials—F. H. HUANG