FATIGUE AT LOW TEMPERATURES

A symposium sponsored by
ASTM Committees E-9 on Fatigue
and E-24 on Fracture Testing
Louisville, KY, 10 May 1983

ASTM SPECIAL TECHNICAL PUBLICATION 857
R. I. Stephens, The University of Iowa, editor

ASTM Publication Code Number (PCN)
04-857000-30

ASTM
1916 Race Street, Philadelphia, PA 19103
Foreword

The Symposium on Fatigue at Low Temperatures was presented in Louisville, Kentucky, on 10 May 1983 at the ASTM May committee week. ASTM Committees E-9 on Fatigue and E-24 on Fracture Testing sponsored the event. R. I. Stephens, The University of Iowa, served as symposium chairman and has also edited this publication. The symposium organizing committee and session chairmen were W. W. Gerberich, The University of Minnesota, D. E. Pettit, Lockheed-California Company, R. L. Tobler, National Bureau of Standards, and R. I. Stephens.
Related
ASTM Publications

Design of Fatigue and Fracture Resistant Structures, STP 761 (1982), 04-761000-30
Fatigue Mechanisms, STP 675 (1979), 04-675000-30
Properties of Materials for Liquefied Natural Gas Tankage, STP 579 (1975), 04-579000-30
Fatigue and Fracture Toughness—Cryogenic Behavior, STP 556 (1974), 04-556000-30
Fracture Toughness Testing at Cryogenic Temperatures, STP 496 (1971), 04-496000-30
A Note of Appreciation to Reviewers

The quality of the papers that appear in this publication reflects not only the obvious efforts of the authors but also the unheralded, though essential, work of the reviewers. On behalf of ASTM we acknowledge with appreciation their dedication to high professional standards and their sacrifice of time and effort.

*ASTM Committee on Publications*
ASTM Editorial Staff

Janet R. Schroeder
Kathleen A. Greene
Helen M. Hoersch
Helen P. Mahy
Allan S. Kleinberg
Susan L. Gebremedhin
David L. Jones
Contents

Introduction 1

Mechanisms and Material Properties

Cryogenic Temperatures

Midrange Fatigue Crack Growth Data Correlations for Structural Alloys at Room and Cryogenic Temperatures—R. L. Tobler and Yi-Wen Cheng 5
Discussion 28

Cyclic Softening and Hardening of Austenitic Steels at Low Temperatures—K. Shibata, Y. Kishimoto, N. Namura, and T. Fujita 31
Discussion 46

Fatigue Crack Growth Behavior in a Nitrogen-Strengthened High-Manganese Steel at Cryogenic Temperatures—R. Ogawa and J. W. Morris, Jr. 47

Noncryogenic Temperatures

Effect of Low Temperature on Apparent Fatigue Threshold Stress Intensity Factors—K. A. Esaklul, W. Yu, and W. W. Gerberich 63
Discussion 82

Correlation of the Parameters of Fatigue Crack Growth with Plastic Zone Size and Fracture Micromechanisms in Vacuum and at Low Temperatures—B. I. Verkin, N. M. Grinberg, and V. A. Serdyuk 84

Low-Temperature Fatigue Crack Propagation in a β-Titanium Alloy—K. V. Jata, W. W. Gerberich, and C. J. Beevers 102
Discussion 120
Fatigue Crack Propagation of 25Mn-5Cr-1Ni Austenitic Steel at Low Temperatures—TAKEO YOKOBORI, ICHIRO MAEKAWA, YUJI TANABE, ZHIHAO JIN, AND SHIN-ICHI NISHIDA 121

Constant-Amplitude Fatigue Behavior of Five Carbon or Low-Alloy Cast Steels at Room Temperature and −45°C—R. I. STEPHENS, J. H. CHUNG, S. G. LEE, H. W. LEE, A. FATEMI, AND C. VACAS-OLEAS 140

SPECTRUM LOADING, STRUCTURES, AND APPLICATIONS

Cryogenic Temperatures

Fiberglass Epoxy Laminate Fatigue Properties at 300 and 20 K—J. M. TOOTH, JR., W. J. BAILEY, AND D. A. BOYCE 163

Computerized Near-Threshold Fatigue Crack Growth Rate Testing at Cryogenic Temperatures: Technique and Results—P. K. LIAW, W. A. LOGSDON, AND M. H. ATTAAR 173

Discussion 190

Effect of Warm Prestressing on Fatigue Crack Growth Curves at Low Temperatures—YOSEF KATZ, ARIEH BUSSIBA, AND HAIM MATHIAS 191

Discussion 209

Effect of Low Temperature on Fatigue and Fracture Properties of Ti-5Al-2.5Sn (ELI) for Use in Engine Components—J. T. RYDER AND W. E. WITZELL 210

Noncryogenic Temperatures


Low Temperature and Loading Frequency Effects on Crack Growth and Fracture Toughness of 2024 and 7475 Aluminum—P. R. ABELKIS, M. B. HARMON, E. L. HAYMAN, T. L. MACKAY, AND JOHN ORLANDO 257

Fatigue Crack Growth Behavior in Mild Steel Weldments at Low Temperatures—Y. KITSUNAI 274