TITANIUM ALLOYS IN SURGICAL IMPLANTS

A symposium sponsored by
ASTM Committee F-4 on Medical and Surgical Materials and Devices and
ASTM Committee B-10 on Reactive and Refractory Metals and Alloys
Phoenix, Ariz., 11–12 May 1981

ASTM SPECIAL TECHNICAL PUBLICATION 796
Hugh A. Luckey, 3M Orthopedic Products, and Fred Kubli, Jr., RMI Company, editors

ASTM Publication Code Number (PCN)
04-796000-54

1916 Race Street, Philadelphia, Pa. 19103
NOTE

The Society is not responsible, as a body, for the statements and opinions advanced in this publication.
Foreword

The symposium on Titanium Alloys in Surgical Implants was held in Phoenix, Ariz., on 11-12 May 1981. Sponsoring the event were ASTM Committee F-4 on Medical and Surgical Materials and Devices and ASTM Committee B-10 on Reactive and Refractory Metals and Alloys. The symposium chairmen were Hugh A. Luckey, 3M Orthopedic Products, and Fred Kubli, Jr., RMI Company, both of whom also served as editors of this publication.
Related
ASTM Publications

Medical Devices: Measurements, Quality Assurance, and Standards, STP 800 (1983), 04-800000-54

Corrosion and Degradation of Implant Materials, STP 684 (1979), 04-684000-27

Industrial Applications of Titanium and Zirconium, STP 728 (1981), 04-728000-05

Design of Fatigue and Fracture Resistant Structures, STP 761 (1982), 04-761000-30
A Note of Appreciation to Reviewers

The quality of the papers that appear in this publication reflects not only the obvious efforts of the authors but also the unheralded, though essential, work of the reviewers. On behalf of ASTM we acknowledge with appreciation their dedication to high professional standards and their sacrifice of time and effort.

ASTM Committee on Publications
ASTM Editorial Staff

Janet R. Schroeder
Kathleen A. Greene
Rosemary Horstman
Helen M. Hoersch
Helen P. Mahy
Allan S. Kleinberg
Virginia M. Barishek
Contents

Introduction 1

Metallurgical Processing of Titanium Alloys

Titanium Alloys for Biomaterial Application: An Overview—
B. P. BANNON AND E. E. MILD 7

Processing and Mechanical Properties of Investment Cast Ti-6Al-4V
ELI Alloy for Surgical Implants: A Progress Report—
R. J. SMICKLEY AND L. P. BEDNARZ 16

Hot Isostatic Pressed Powder Metal Titanium Implant Devices—
V. K. CHANDHOK AND F. J. RIZZO 33

High-Integrity Titanium Alloy Shapes by Powder Metallurgy—
D. EYLON AND F. H. FROES 43

Designing Titanium Alloy Implants

Implantable Titanium Feedthrough Reliability—D. E. DIXON 61

A Method for Quantifying Stiffness Parameters of Titanium
Alloy Femoral Stems and Cobalt-Chrome Alloy Prostheses—
E. T. ESPIRITU, S. RAO, A. L. SEW HOY, I. C. CLARKE,
AND A. SARMIENTO 74

Comparison of Loading Behavior of Femoral Stems of Ti-6Al-4V and
Cobalt-Chromium Alloys: a Three-Dimensional Finite
Element Analysis—R. R. TARR, I. C. CLARKE, T. A. GRUEN,
AND A. SARMIENTO 88
Fatigue and Wear Behavior of Titanium Alloys

Influence of Heat Treatment on the Fatigue Lives of Ti-6Al-4V and Ti-4.5Al-5Mo-1.5Cr—M. A. Imam, A. C. Fraher, J. S. Harris, and C. M. Gilmore 105

Comparison of the Fatigue Strength of Femoral Prosthesis Stems Made of Forged Ti-Al-V and Cobalt-Base Alloys—M. F. Semlitsch, B. Panic, H. Weber, and R. Schoen 120


Clinical Experience with Titanium Alloys

Preliminary Clinical Analysis of Mechanical Performance of the STH Titanium Alloy Total Hip Replacement—Gregory Zych, L. L. Latta, and Walid Mnaymneh 151

Behavior of Commercially Pure Titanium and Ti-318 (Ti-6Al-4V) in Orthopedic Implants—H. S. Dobbs, and J. T. Scales 173

Corrosion Behavior of Titanium Alloys


Analysis of a Titanium Alloy Total Hip Device—J. E. Lemons, L. C. Lucas, R. A. Buchanan, and R. C. Compton 220

Tensile Strength, Fatigue Life, and Corrosion Behavior of Ti-318 and Ti-550—H. S. Dobbs and J. L. M. Robertson 227
Porous Titanium Alloy Implants


Summary

Summary 283

Index 291