ROLLING CONTACT
FATIGUE TESTING OF
BEARING STEELS

A symposium
sponsored by
ASTM Committee A-1
on Steel, Stainless Steel,
and Related Alloys
Phoenix, Ariz., 12–14 May 1981

ASTM SPECIAL TECHNICAL PUBLICATION 771
J. J. C. Hoo, Acciaierie e Ferriere Lombarde
Falck and Acciaierie di Bolzano
editor

ASTM Publication Code Number (PCN)
04-771000-02

ASTM 1916 Race Street, Philadelphia, Pa. 19103
NOTE

The Society is not responsible, as a body, for the statements and opinions advanced in this publication.
Foreword

The symposium on Rolling Contact Fatigue Testing of Bearing Steels was held on 12-14 May 1981 in Phoenix, Ariz. Sponsoring the event was ASTM Committee A-1 on Steel, Stainless Steel, and Related Alloys and its Subcommittee A01.28 on Bearing Steels. The chairman of the symposium was J. J. C. Hoo, Acciaierie e Ferriere Lombarde Falck and Acciaierie di Bolzano, who also served as editor of this publication.
Related ASTM Publications

Bearing Steels: The Rating of Nonmetallic Inclusion, STP 575 (1975), 04-575000-02

Toughness of Ferritic Stainless Steels, STP 706 (1980), 04-706000-02

Methods and Models for Predicting Fatigue Crack Growth Under Random Loading, STP 748 (1981), 04-748000-30

Statistical Analysis of Fatigue Data, STP 744 (1981), 04-744000-30

Properties of Austenitic Stainless Steels and Their Weld Metals (Influence of Slight Chemistry Variations), STP 679 (1979), 04-679000-02
A Note of Appreciation to Reviewers

This publication is made possible by the authors and, also, the unheralded efforts of the reviewers. This body of technical experts whose dedication, sacrifice of time and effort, and collective wisdom in reviewing the papers must be acknowledged. The quality level of ASTM publications is a direct function of their respected opinions. On behalf of ASTM we acknowledge with appreciation their contribution.

ASTM Committee on Publications
Editorial Staff

Jane B. Wheeler, *Managing Editor*
Helen M. Hoersch, *Senior Associate Editor*
Helen P. Mahy, *Senior Assistant Editor*
Allan S. Kleinberg, *Assistant Editor*
Virginia M. Barishek, *Assistant Editor*
Contents

Introduction
1

Element Testing Machines of a Given Design with Collaborative Testing Results

NASA Five-Ball Fatigue Tester—Over 20 Years of Research—
E. V. ZARETSKY, R. J. PARKER, AND W. J. ANDERSON
5

Materials Evaluation by Flat Washer Testing—J. M. HAMPShIRE,
J. V. NASH, AND G. E. HOLLOX
46

Unisteel Testing of Aircraft Engine Bearing Steels—K. L. DAY
67

Development and Application of the Rolling Contact Fatigue Test Rig—E. N. BAMBERGER AND J. C. CLARK
85

Discussion
106

A Ball-Rod Rolling Contact Fatigue Tester—DOUGLAS GLOVER
107

Accelerated Rolling Contact Fatigue Test by a Cylinder-to-Ball Rig—
S. ITO, N. TSUSHIMA, AND H. MURO
125

Investigation of Optimum Crowning in a Line Contact Cylinder-to-Cylinder Rolling Contact Fatigue Test Rig—I. SUGIURA,
S. ITO, N. TSUSHIMA, AND H. MURO
136

Observations of the Peeling Mode of Failure and Surface-Originated Flaking from a Ring-to-Ring Rolling Contact Fatigue Test Rig—M. TOKUDA, M. NAGAFUCHI, N. TSUSHIMA, AND H. MURO
150

Rolling Contact Fatigue Testing in General:
Comparison of Methods and Test Results

Methods of Testing for Rolling Contact Fatigue of Bearing Steels—
A. T. GALBATO
169

Experience of Element and Full-Bearing Testing of Materials over Several Years—G. B. JOHNSTON, T. ANDERSSON,
E. V. AMERONGEN, AND A. VOSKAMP
190
A Four-Bearing Fatigue Life Test Rig—R. A. Hobbs 206

Use of Accelerated Tests to Establish the Lubricant-Steel Interaction on Bearing Fatigue Life—P. R. Eastaugh 219

Effects of Testing Conditions on Rolling Contact Fatigue and Evaluation of Test Results

Rolling Bearing Life Tests and Scanning Electron Microscopy—F. R. Morrison, Thomas Yonushonis, and James Zielinski 239

Influence of Wear Debris on Rolling Contact Fatigue—R. S. Sayles and P. B. MacPherson 255

Influence of Load on the Magnitude of the Life Exponent for Rolling Bearings—Hans-Karl Lorösch 275

Analysis of Sets of Two-Parameter Weibull Data Arising in Rolling Contact Endurance Testing—J. I. McCool 293

Effects of Material and Structural Variations on Rolling Contact Fatigue

Rolling Contact Fatigue Evaluation of Advanced Bearing Steels—D. Pogoshev and R. Valori 342

Rolling Contact Fatigue Mechanisms—Accelerated Testing Versus Field Performance—O. Zwirlein and H. Schlicht 358

Effect of Plantlife Carbides Below the Rolling Surface in a Ball-Washer Thrust Rolling Contact Fatigue Tester—K. Tsubota and A. Koyanagi 380

Effect of Test Variables on the Rolling Contact Fatigue of AISI 9310 and VASCO X-2 Steels—R. M. Lamothe, T. F. Zagaeski, Ray Cellitti, and Clarence Carter 392

Summary

Summary 409

Index 415