LOW-CYCLE FATIGUE AND LIFE PREDICTION

Amzallag/Leis/Rabbe, editors

ASTM STP 770
LOW-CYCLE FATIGUE
AND LIFE PREDICTION

A symposium
sponsored by
French Metallurgical Society
and ASTM
Firminy, France, 23–25 Sept. 1980

ASTM SPECIAL TECHNICAL PUBLICATION 770
C. Amzallag, Creusot-Loire
B. N. Leis, Battelle Columbus Laboratories
P. Rabbe, Creusot-Loire
editors

ASTM Publication Code Number (PCN)
04-770000-30

1916 Race Street, Philadelphia, Pa. 19103
NOTE

The Society is not responsible, as a body, for the statements and opinions advanced in this publication.
Foreword

The International Symposium on Low Cycle Fatigue and Life Prediction, sponsored by the French Metallurgical Society and ASTM, was held in Firminy, France, on 23–25 September 1980. C. Amzallag and P. Rabbe, Creusot-Loire, served as chairmen. Messrs. Amzallag and Rabbe, and B. N. Leis, Battelle Columbus Laboratories, have edited this publication.
Related
ASTM Publications

Design of Fatigue and Fracture Resistant Structures, STP 761 (1982), 04-761000-30

Methods and Models for Predicting Fatigue Crack Growth under Random Loading, STP 748 (1981), 04-748000-30

Statistical Analysis of Fatigue Data, STP 744 (1981), 04-744000-30

Fatigue Crack Growth Measurement and Data Analysis, STP 738 (1981), 04-738000-30

Tables for Estimating Median Fatigue Limits, STP 731 (1981), 04-731000-30

Fatigue of Fibrous Composite Materials, STP 723 (1981), 04-723000-33

Effect of Load Variables on Fatigue Crack Initiation and Propagation, STP 714 (1980), 04-714000-30

Part-Through Crack Fatigue Life Prediction, STP 687 (1979), 04-687000-30

Fatigue Mechanisms, STP 675 (1979), 04-675000-30

Service Fatigue Loads Monitoring, Simulation, and Analysis, STP 671 (1979), 04-671000-30

Cyclic Stress-Strain and Plastic Deformation Aspects of Fatigue Crack Growth, STP 637 (1977), 04-637000-30
A Note of Appreciation
to Reviewers

This publication is made possible by the authors and, also, the unheralded efforts of the reviewers. This body of technical experts whose dedication, sacrifice of time and effort, and collective wisdom in reviewing the papers must be acknowledged. The quality level of ASTM publications is a direct function of their respected opinions. On behalf of ASTM we acknowledge with appreciation their contribution.

ASTM Committee on Publications
Editorial Staff

Jane B. Wheeler, Managing Editor
Helen M. Hoersch, Senior Associate Editor
Helen P. Mahy, Senior Assistant Editor
Allan S. Kleinberg, Assistant Editor
Virginia M. Barishek, Assistant Editor
Contents

Introduction 1

RESEARCH


Low-Cycle Fatigue Damage Accumulation of Aluminum Alloys—C. BATHIAS, M. GABRA, AND D. ALIAGA 23

Creep and Cyclic Tension Behavior of a Type 316 Stainless Steel at Room Temperature—A. M. NOMINE, D. DUBOIS, D. MIANNAY, P. BALLADON, AND J. HERITIER 45

Evaluation of the Resistance of Type 316 Stainless Steel Against Progressive Deformation—A. PELLISSIER-TANON, J. L. BERNARD, C. AMZALLAG, AND P. RABBE 69

Lifetime Predictions and Cumulative Damage under High-Temperature Conditions—J. L. CHABOCHE 81

An Evaluation of Four Creep-Fatigue Models for a Nickel-Base Superalloy—H. L. BERNSTEIN 105

Damage Accumulation and Fracture Life in High-Temperature Low-Cycle Fatigue—V. M. RADHAKRISHNAN 135

Behavior in Fatigue-Relaxation of a High-Creep Resistant Type 316L Stainless Steel—M. MOTTOT, P. PÊTREQUIN, C. AMZALLAG, P. RABBE, J. GRATTIER, AND S. MASSON 152

Assessment of High-Temperature Low-Cycle Fatigue Life of Austenitic Stainless Steels by Using Intergranular Damage as a Correlating Parameter—C. LEVAILLANT AND A. PINEAU 169

Cumulation of High-Temperature Low-Cycle Fatigue Damage in Two-Temperature Tests—J. REUCHET, M. REGER, F. REZAI-ARIA, AND L. RÉMY 194
Low-Cycle Fatigue Damage Mechanisms in Body-Centered-Cubic Materials—T. MAGNIN AND J. H. DRIVER 212


Application of Low-Cycle Fatigue Test Results to Crack Initiation from Notches—M. TRUCHON 254


Low-Cycle Fatigue Behavior of Thick High-Strength Steel Plates for Pressure Vessels—R. D’HAEYER AND P. SIMON 296

Low-Cycle Fatigue Behavior of Welded Joints in High-Strength Steels—H.-P. LIEURADE AND C. MAILLARD-SALIN 311

Growth of Short Cracks During High Strain Fatigue and Thermal Cycling—R. P. SKELTON 337

Prediction of Fatigue Life of Smooth Specimens of SG Iron by Using a Fracture Mechanics Approach—M. S. STARKEY AND P. E. IRVING 382

Growth of Physically Short Corner Cracks at Circular Notches—B. N. LEIS AND R. D. GALLIHER 399

Fatigue Crack Initiation of Cr-Mo-V Steel in High-Temperature Environment—KAORU WADA, YUTAKA UNO, AND MASAHIKO SUZUKI 422

Fatigue Behavior of Carbon Steel Components in High-Temperature Water Environments—S. RANGANATH, J. N. KASS, AND J. D. HEALD 436

Effect of Light-Water Reactor Environments on Fatigue Crack Growth Rate in Reactor Pressure Vessel Steels—KARI TÖRRÖNEN AND W. H. CULLEN, JR. 460

Two Decades of Progress in the Assessment of Multiaxial Low-Cycle Fatigue Life—M. W. BROWN AND K. J. MILLER 482

Multiaxial Nonproportional Cyclic Deformation—D. L. MCDOWELL, D. F. SOCIE, AND H. S. LAMBA 500
Low-Cycle Fatigue under Biaxial Strain—A. MOGUEROU, R. VASSAL, G. VESSIERE, AND J. BAHUAUD 519

APPLICATIONS

The Concept of Uniform Scatter Bands for Analyzing S-N Curves of Unnotched and Notched Specimens in Structural Steel—E. HAIBACH AND C. MATSCHKE 549


Use of Low-Cycle Fatigue Data for Pressure Vessel Design—C. W. LAWTON 585

Materials—Data Needs for Fatigue Design of Pressure Vessel Systems—C. E. JASKE 600

Influence of Local Strain Distribution on Low-Cycle Fatigue Behavior of Thick-Walled Structures—VATROSLAV GRUBISIC AND C. M. SONSINO 612

SUMMARY

Summary 633

Index 639