EFFECT OF LOAD SPECTRUM VARIABLES ON FATIGUE CrACK INITIATION AND PROPAGATION

A symposium sponsored by ASTM Committee E-9 on Fatigue
AMERICAN SOCIETY FOR TESTING AND MATERIALS
San Francisco, Calif., 21 May 1979

ASTM SPECIAL TECHNICAL PUBLICATION 714
D. F. Bryan, The Boeing Wichita Co., and
J. M. Potter, Air Force Flight Dynamics Laboratory, editors

04-714000-30

AMERICAN SOCIETY FOR TESTING AND MATERIALS
1916 Race Street, Philadelphia, Pa. 19103
NOTE
The Society is not responsible, as a body, for the statements and opinions advanced in this publication.
Foreword

The symposium on Effect of Load Spectrum Variables on Fatigue Crack Initiation and Propagation was presented at San Francisco, Calif., 21 May 1979. The symposium was sponsored by the American Society for Testing and Materials through its Committee E-9 on Fatigue. D. F. Bryan, The Boeing Wichita Co., and J. M. Potter, Air Force Flight Dynamics Laboratory, presided as symposium chairmen and editors of this publication.
Related
ASTM Publications

Part-Through Crack Fatigue Life Predictions, STP 687 (1979), $26.65, 04-687000-30

Service Fatigue Loads Monitoring, Simulation, and Analysis, STP 671 (1979), $29.50, 04-671000-30

Fatigue Crack Growth under Spectrum Loads, STP 595 (1976), $34.50, 04-595000-30

Manual on Statistical Planning and Analysis for Fatigue Experiments, STP 588 (1975), $15.00, 04-588000-30

Handbook of Fatigue Testing, STP 566 (1974), $17.25, 04-566000-30

Damage Tolerance in Aircraft Structures, STP 486 (1971), $19.50, 04-486000-30
A Note of Appreciation
to Reviewers

This publication is made possible by the authors and, also, the unheralded efforts of the reviewers. This body of technical experts whose dedication, sacrifice of time and effort, and collective wisdom in reviewing the papers must be acknowledged. The quality level of ASTM publications is a direct function of their respected opinions. On behalf of ASTM we acknowledge with appreciation their contribution.

ASTM Committee on Publications
Editorial Staff

Jane B. Wheeler, *Managing Editor*
Helen M. Hoersch, *Associate Editor*
Helen Mahy, *Senior Assistant Editor*
Contents

Introduction 1

Effect of Spectrum Editing on Fatigue Crack Initiation and Propagation in a Notched Member—D. F. SOCIE AND P. J. ARTWOHL 3
Discussion 23

Time Dependent Changes in Notch Stress/Notch Strain and Their Effects on Crack Initiation—J. R. CARROLL, JR. 24

Ranking 7XXX Aluminum Alloy Fatigue Crack Growth Resistance Under Constant Amplitude and Spectrum Loading—

Effects of Compressive Loads on Spectrum Fatigue Crack Growth Rate—T. M. HSU AND W. M. MCGEE 79

Observation of Crack Retardation Resulting from Load Sequencing Characteristic of Military Gas Turbine Operation—
J. M. LARSEN AND C. G. ANNIS, JR. 91

An Engineering Model for Assessing Load Sequencing Effects—
J. T. WOZUMI, T. SPAMER, AND G. E. LAMBERT 128

Effect of Transport Aircraft Wing Loads Spectrum Variation on Crack Growth—P. R. ABELKIS 143

Effect of Gust Load Alleviation on Fatigue and Crack Growth in ALCLAD 2024-T3—J. B. DE JONGE AND A. NEDERVEEN 170

Prediction Model for Fatigue Crack Growth in Windmill Structures—
R. W. FINGER 185
Discussion 199

Summary 228

Index 231