FLAW GROWTH AND FRACTURE

Proceedings of the
Tenth National Symposium
on Fracture Mechanics

A symposium sponsored by
ASTM Committee E-24 on
Fracture Testing of Metals
American Society for
Testing and Materials

ASTM SPECIAL TECHNICAL PUBLICATION 631
J. M. Barsom, symposium chairman

List price $49.75
04-631000-30

AMERICAN SOCIETY FOR TESTING AND MATERIALS
1916 Race Street, Philadelphia, Pa. 19103
Foreword

Related
ASTM Publications

Properties of Materials for Liquefied Natural Gas Tankage,
STP 579 (1975), $39.75 (04-579000-30)

Mechanics of Crack Growth, STP 590 (1976), $45.25
(04-590000-30)

Fractography—Microscopic Cracking Process, STP 600,
(1976), $27.50 (04-600000-30)
A Note Of Appreciation to Reviewers

This publication is made possible by the authors and, also, the unheralded efforts of the reviewers. This body of technical experts whose dedication, sacrifice of time and effort, and collective wisdom in reviewing the papers must be acknowledged. The quality level of ASTM publications is a direct function of their respected opinions. On behalf of ASTM we acknowledge with appreciation their contribution.

ASTM Committee on Publications
Editorial Staff

Jane B. Wheeler, Managing Editor
Helen M. Hoersch, Associate Editor
Ellen J. McGlinchey, Senior Assistant Editor
Kathleen P. Zirbser, Assistant Editor
Sheila G. Pulver, Assistant Editor
Contents

Introduction

J-Integral—What Is It?	4
Crack-Tip Stress and Strain Fields	9
Linear-Elastic Crack-Tip Stress and Strain Fields	10
Elastic-Plastic Crack-Tip Stress and Strain Fields	10
The Intensely Deformed Nonlinear Zone	12
J-Integral Analysis for Monotonic Loading withAbrupt Failure or Stable Tearing	14
J-Integral Rate for Time-Dependent Plasticity	15
Application of J-Integral Analysis to Fatigue-Crack Growth	17
Computation Methods and Estimates for J Determination	19
Summary of the Comprehensive Nature of J-Integral Analysis	24
Comparative Applicability of J-Integral and Other Methods	25
Conclusions	26

Path Dependence of the J-Integral and the Role of J as a Parameter Characterizing the Near-Tip Field—R. M. McMeeking

Definition of the J-Integral	30
Path Dependence of the J-Integral	31
Path Dependence of the J-Integral in a Rigid-Plastic Model	35
Crack and Notch-Tip Blunting	38
Deformation Near Notch Tips in Incremental and Deformation Theory Materials	39

Fracture Analysis Under Large-Scale Plastic Yielding: A Finite Deformation Embedded Singularity, Elastoplastic Incremental Finite-Element Solution—S. N. Atluri, Michihiko Nakagaki, and Wen-Hwa Chen

Brief Description of Formulation	44
Problem Definition	52
Results for J-Integral	53
Conclusions	60
Comparison of Compliance and Estimation Procedures for Calculating J-Integral Values—J. P. Hickerson, Jr. 62
Procedures 65
Results and Discussion 68
Conclusions 70

Evaluation of the Toughness of Thick Medium-Strength Steels by Using Linear-Elastic Fracture Mechanics and Correlations Between K_{IC} and Charpy V-Notch—B. Marandet and G. Sanz 72
Steels Studied—Heat Treatments 73
Experimental Results 78
Correlations Between K_{IC} and Other Brittleness Parameters 88
Conclusions 94

Correlation Between the Fatigue-Crack Initiation at the Root of a Notch and Low-Cycle Fatigue Data—A. Baus, H. P. Lieurade, G. Sanz, and M. Truchon 96
Materials 97
Experiments 98
Results of Initiation Tests 99
Behavior of Metal at Notch Root 101
Calculation of the Duration of the Initiation Phase 107
Comparison of Different Analyses 108
Conclusions 109

Ductile Rupture Blunt-Notch Fracture Criterion—J. A. Begley, W. A. Logsdon, and J. D. Landes 112
Experimental Procedures 113
Results 116
Discussion 119
Summary and Conclusions 119

Stress-Corrosion Crack Initiation in High-Strength Type 4340 Steel—W. G. Clark, Jr. 121
Material and Specimen Preparation 123
Experimental Procedure 124
Analysis of Blunt-Notch Specimens 126
Experimental Results 128
Discussion 133
Summary and Conclusions 136
<table>
<thead>
<tr>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fatigue-Crack Growth Rate Testing at High Stress Intensities—</td>
<td></td>
</tr>
<tr>
<td>N. E. DOWLING</td>
<td>139</td>
</tr>
<tr>
<td>Laboratory Investigation</td>
<td>140</td>
</tr>
<tr>
<td>Discussion</td>
<td>148</td>
</tr>
<tr>
<td>Conclusions</td>
<td>155</td>
</tr>
<tr>
<td>Fatigue-Crack Propagation in Electroslag Weldments—</td>
<td></td>
</tr>
<tr>
<td>B. M. KAPADIA AND E. J. IMHOF, JR.</td>
<td>159</td>
</tr>
<tr>
<td>Materials and Experimental Procedure</td>
<td>160</td>
</tr>
<tr>
<td>Results and Discussion</td>
<td>164</td>
</tr>
<tr>
<td>Summary</td>
<td>172</td>
</tr>
<tr>
<td>Fatigue Growth of Surface Cracks—</td>
<td></td>
</tr>
<tr>
<td>T. A. CRUSE, G. J. MEYERS, AND R. B. WILSON</td>
<td>174</td>
</tr>
<tr>
<td>Surface Flaw Specimen Correlation</td>
<td>175</td>
</tr>
<tr>
<td>Corner Crack Specimen Correlation</td>
<td>182</td>
</tr>
<tr>
<td>Conclusions</td>
<td>188</td>
</tr>
<tr>
<td>Stress Intensities for Cracks Emanating from Pin-Loaded Holes—</td>
<td></td>
</tr>
<tr>
<td>C. W. SMITH, M. JOLLES, AND W. H. PETERS</td>
<td>190</td>
</tr>
<tr>
<td>Analytical Considerations</td>
<td>191</td>
</tr>
<tr>
<td>Conclusions</td>
<td>200</td>
</tr>
<tr>
<td>Dependence of J_{lc} on the Mechanical Properties of Ductile</td>
<td></td>
</tr>
<tr>
<td>Materials—J. LANTEIGNE, M. N. BASSIM, AND D. R. HAY</td>
<td>202</td>
</tr>
<tr>
<td>J-Integral as a Function of Compliance</td>
<td>203</td>
</tr>
<tr>
<td>Plastic Zone Correction</td>
<td>205</td>
</tr>
<tr>
<td>Dependence of J_{lc} on the Mechanical Properties</td>
<td>207</td>
</tr>
<tr>
<td>Experimental Results</td>
<td>208</td>
</tr>
<tr>
<td>Discussion</td>
<td>213</td>
</tr>
<tr>
<td>Summary and Conclusions</td>
<td>215</td>
</tr>
<tr>
<td>Effect of Specimen Size on J-Integral and Stress-Intensity Factor</td>
<td></td>
</tr>
<tr>
<td>at the Onset of Crack Extension—H. P. KELLER AND D. MUNZ</td>
<td>217</td>
</tr>
<tr>
<td>General Remarks on the Effect of Specimen Size</td>
<td>218</td>
</tr>
<tr>
<td>Materials and Experimental Procedure</td>
<td>221</td>
</tr>
<tr>
<td>Experimental Results</td>
<td>223</td>
</tr>
<tr>
<td>Conclusions</td>
<td>229</td>
</tr>
<tr>
<td>Title</td>
<td>Author(s)</td>
</tr>
<tr>
<td>--</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Determination of Stress Intensities of Through-Cracks in a Plate</td>
<td>H. Kitagawa and H. Ishikawa</td>
</tr>
<tr>
<td>Structure Under Uncertain Boundary Conditions by Means of Strain</td>
<td></td>
</tr>
<tr>
<td>Gages—H. Kitagawa and H. Ishikawa</td>
<td></td>
</tr>
<tr>
<td>Procedures of Analysis</td>
<td></td>
</tr>
<tr>
<td>Calculating Table for Stress-Intensity Factors</td>
<td></td>
</tr>
<tr>
<td>Examination of Accuracy of the Present Calculation</td>
<td></td>
</tr>
<tr>
<td>Examples of Determination of K by the Experiments of Strain</td>
<td></td>
</tr>
<tr>
<td>Measurement and Examination of Availability of the Present Method</td>
<td></td>
</tr>
<tr>
<td>Summary</td>
<td></td>
</tr>
<tr>
<td>Determination of R-Curves for Structural Materials by Using</td>
<td>D. E. McCabe</td>
</tr>
<tr>
<td>Nonlinear Mechanics Methods—D. E. McCabe</td>
<td></td>
</tr>
<tr>
<td>Specimen</td>
<td></td>
</tr>
<tr>
<td>Equipment</td>
<td></td>
</tr>
<tr>
<td>Cryogenic Tests</td>
<td></td>
</tr>
<tr>
<td>Instrumentation</td>
<td></td>
</tr>
<tr>
<td>Test Procedure</td>
<td></td>
</tr>
<tr>
<td>Summary and Discussion</td>
<td></td>
</tr>
<tr>
<td>Fracture Behavior of Bridge Steels—R. Roberts, G. V. Krishna,</td>
<td></td>
</tr>
<tr>
<td>and G. R. Irwin</td>
<td></td>
</tr>
<tr>
<td>General Fracture Behavior of Structural Steels</td>
<td></td>
</tr>
<tr>
<td>Experimental Details</td>
<td></td>
</tr>
<tr>
<td>Experimental Results</td>
<td></td>
</tr>
<tr>
<td>AASHTO Requirements and Fracture Safe Bridge Design</td>
<td></td>
</tr>
<tr>
<td>Summary and Discussion</td>
<td></td>
</tr>
<tr>
<td>Fracture Characteristics of Plain and Welded 3-In.-Thick Aluminum</td>
<td>F. G. Nelson and D. J. Broughill</td>
</tr>
<tr>
<td>Alloy Plate at Various Temperatures—F. G. Nelson and</td>
<td></td>
</tr>
<tr>
<td>D. J. Broughill</td>
<td></td>
</tr>
<tr>
<td>Material</td>
<td></td>
</tr>
<tr>
<td>Procedure</td>
<td></td>
</tr>
<tr>
<td>Discussion of Results</td>
<td></td>
</tr>
<tr>
<td>Conclusions</td>
<td></td>
</tr>
<tr>
<td>Fracture Toughness of Random Glass Fiber Epoxy Composites:</td>
<td>Satish Gagggar and L. J.</td>
</tr>
<tr>
<td>An Experimental Investigation—Satish Gagggar and</td>
<td>Broutman</td>
</tr>
<tr>
<td>Material Preparation and Experimental Procedure</td>
<td></td>
</tr>
<tr>
<td>Results and Discussion</td>
<td></td>
</tr>
<tr>
<td>Conclusion</td>
<td></td>
</tr>
</tbody>
</table>
Effect of Cold Working on K_{sec} in a 4340 Steel—W. G. CLARK, JR.
Material and Specimen Preparation 332
Experimental Procedure 334
Experimental Results 335
Discussion 342
Conclusions 343

Corrosion Fatigue Properties of Ti-6Al-6V-2Sn (STOA)—
Material Characterization 346
Fatigue Crack Propagation Test Procedure 348
Results 351
Discussion 359
Conclusions 362

Effect of Thickness on Retardation Behavior of 7074 and 2024 Aluminum Alloys—G. R. CHANANI 365
Experimental Procedure 366
Results and Discussion 367
Summary and Conclusions 385

Spectrum Loading—A Useful Tool to Screen Effects of Microstructure on Fatigue Crack-Growth Resistance—
R. J. BUCCI 388

Fatigue-Crack Propagation Through a Measured Residual Stress Field in Alloy Steel—J. H. UNDERWOOD, L. P. POOK, AND J. K. SHARPLES 402
Test Procedures 404
Test Results and Analysis 407
Closing 414

Automated Design of Stiffened Panels Against Crack Growth and Fracture Among Other Design Constraints—C. S. DAVIS 416
Crack Growth and Fracture 419
Automated Design Procedure 431
Design Problems and Results 432
Conclusions 442
Material and Specimen Preparation 447
Testing Equipment 448
Discussion of EPRI Dynamic Test Procedures 448
Results 451
Conclusions and Recommendations 456

Experimental Verification of the J_{∞} and Equivalent Energy Methods for the Evaluation of the Fracture Toughness of Steels—B. Marandet and G. Sanz 462
Materials and Experimental Methods 463
Experimental Results 469
Application of the Equivalent Energy Method 473
Conclusions 474

Dynamic Fracture Toughness of SA533 Grade A Class 2 Base Plate and Weldments—W. A. Logsdon and J. A. Begley 477
Material, Mechanical Properties, and Weld Parameters 478
Experimental Procedures 482
Results 486
Discussion 489
Conclusions 491

Prediction of Fracture Toughness K_{∞} of $2\frac{1}{4}$Cr-1Mo Pressure Vessel Steels for Charpy V-Notch Test Results—T. Iwadate, T. Karaushi, and J. Watanabe 493
Materials and Experimental Procedure 494
Results and Discussion 498
Summary 504

Analysis of Stable and Catastrophic Crack Growth Under Rising Load—S. R. Varanasi 507
Finite Element Analysis 508
Results 511
Concluding Remarks 518