FAST FRACTURE
and
CRACK ARREST

Hahn / Kanninen, editors

AMERICAN SOCIETY FOR TESTING AND MATERIALS
NOTE
The Society is not responsible, as a body, for the statements and opinions advanced in this publication.
Foreword

The symposium on Fast Fracture and Crack Arrest was presented at Chicago, Ill., 28–30 June 1976. ASTM Committee E-24 on Fracture Testing of Metals sponsored the symposium. G. T. Hahn, Battelle Columbus Laboratories, presided as symposium chairman. G. T. Hahn and M. F. Kanninen, Battelle Columbus Laboratories, are editors of this publication.
Related ASTM Publications

Resistance to Plane-Stress Fracture (R-Curve Behavior) of A572 Structural Steel, STP 591 (1976), $5.25, 04-591000-30

Cracks and Fracture, STP 601 (1976) $51.75, 04-601000-30

Properties Related to Fracture Toughness, STP 605 (1976), $15.00, 04-605000-30
A Note of Appreciation
to Reviewers

This publication is made possible by the authors and, also, the unheralded efforts of the reviewers. This body of technical experts whose dedication, sacrifice of time and effort, and collective wisdom in reviewing the papers must be acknowledged. The quality level of ASTM publications is a direct function of their respected opinions. On behalf of ASTM we acknowledge with appreciation their contribution.

ASTM Committee on Publications
Editorial Staff

Jane B. Wheeler, Managing Editor
Helen M. Hoersch, Associate Editor
Ellen J. McGlinchey, Assistant Editor
Kathleen P. Turner, Assistant Editor
Sheila G. Pulver, Assistant Editor
Contents

Introduction

Analyses of the Crack Arrest Problem

Comments on Dynamic Fracturing—G. R. Irwin

Dynamic Analysis of Crack Propagation and Arrest in the Double-Cantilever-Beam Specimen—M. F. Kanninen, C. Popelar, and P. C. Gehlen

Preliminary Approaches to Experimental and Numerical Study on Fast Crack Propagation and Crack Arrest—Takeshi Kanazawa, Susumu Machida, and Tokuo Teramoto

Elastodynamic Effects on Crack Arrest—J. D. Achenbach and P. K. Tolikas

A Suddenly Stopping Crack in an Infinite Strip Under Tearing Action—Fred Nilsson

Numerical Analysis Methods for Fast Fracture and Crack Arrest

Dynamic Finite Element and Dynamic Photoelastic Analyses of Crack Arrest in Homalite-100 Plates—A. S. Kobayashi, A. F. Emery, and S. Mall

Analysis of a Rapidly Propagating Crack Using Finite Elements—G. Yagawa, Y. Sakai, and Y. Ando

Singularity-Element Simulation of Crack Propagation—J. A. Aberson, J. M. Anderson, and W. W. King

Effect of Poisson's Ratio on Crack Propagation and Arrest in the Double-Cantilever-Beam Specimen—M. Shmuely

Dynamic Finite Difference Analysis of an Axially Cracked Pressurized Pipe Undergoing Large Deformations—A. F. Emery, W. J. Love, and A. S. Kobayashi

Crack Arrest Determination Using the Double-Cantilever-Beam Specimen

Characteristics of a Run-Arrest Segment of Crack Extension—P. B. Crosley and E. J. Ripling

Crack Propagation with Crack-Tip Critical Bending Moments in Double-Cantilever-Beam Specimens—S. J. Burns and C. L. Chow

Material Response to Fast Crack Propagation

On Effects of Plastic Flow at Fast Crack Growth—K. B. Broberg

Relation Between Crack Velocity and the Stress Intensity Factor in Birefringent Polymers—T. Kobayashi and J. W. Dally

Computation of Crack Propagation and Arrest by Simulating Microfacturing at the Crack Tip—D. A. Shockey, L. Seaman, and D. R. Curran

Effects of Grain Size and Temperature on Flat Fracture Propagation and Arrest in Mild Steel—G. Bullock and E. Smith

Fracture Initiation in Metals Under Stress Wave Loading Conditions—L. S. Costin, J. Duffy, and L. B. Freund

Experimental Methods for Fast Fracture and Crack Arrest

An Investigation of Axisymmetric Crack Propagation—Hans Bergkvist

Measurement of Fast Crack Growth in Metals and Nonmetals—John Congleton and B. K. Denton

A High-Speed Digital Technique for Precision Measurement of Crack Velocities—R. J. Weimer and H. C. Rogers

Towards Development of a Standard Test for Measuring K_{lc}—P. B. Crosley and E. J. Ripling

Influence of the Geometry on Unstable Crack Extension and Determination of Dynamic Fracture Mechanics Parameters—G. C. Angelino

Summary

Summary 410

Index 417