REPRODUCIBILITY AND ACCURACY OF MECHANICAL TESTS

A symposium sponsored by ASTM Committee E-28 on Mechanical Testing
AMERICAN SOCIETY FOR TESTING AND MATERIALS
St. Louis, Mo., 5 May 1976

ASTM SPECIAL TECHNICAL PUBLICATION 626
J. M. Holt, symposium chairman
NOTE

The Society is not responsible, as a body, for the statements and opinions advanced in this publication.
Foreword

The Symposium on Reproducibility and Accuracy of Mechanical Tests was presented at a meeting held in St. Louis, Mo., 5 May 1976. The symposium was sponsored by the American Society for Testing and Materials through its Committee E-28 on Mechanical Testing. J. M. Holt, U. S. Steel Corporation, presided as symposium chairman.
Related
ASTM Publications

Mechanics of Crack Growth, STP 590 (1976), 04-590000-30

Foreign Object Impact Damage to Composites, STP 568 (1975),
04-568000-33

A Note of Appreciation
to Reviewers

This publication is made possible by the authors and, also, the unheralded efforts of the reviewers. This body of technical experts whose dedication, sacrifice of time and effort, and collective wisdom in reviewing the papers must be acknowledged. The quality level of ASTM publications is a direct function of their respected opinions. On behalf of ASTM we acknowledge with appreciation their contribution.

ASTM Committee on Publications
Editorial Staff

Jane B. Wheeler, *Managing Editor*
Helen M. Hoersch, *Associate Editor*
Ellen J. McGlinchey, *Assistant Editor*
Kathleen P. Turner, *Assistant Editor*
Sheila G. Pulver, *Assistant Editor*
Contents

Introduction

Effect of Specimen Taper and Machining Processes on Tension Test
 Results—A. K. Schmieder 3
 Source of Specimens 5
 Preparation of Specimens 6
 Testing Procedure 8
 Results 9
 Discussion 15
 Conclusions 19

Variables Affecting Reproducibility of the Instrumented Impact Test—
 P. T. Lum and C. H. Curl 21
 Materials and Test Procedure 22
 Results and Discussion 24
 Conclusions 30

Pullout Strength of Concrete—Owen Richards 32
 Reproducibility and Accuracy 33
 Examples of Pullout Precision and Correlation to Other Tests 38

Product Form Variability in the Mechanical Behavior of Type 304
 Stainless Steel at Room Temperature and 593°C (1100°F)—
 R. W. Swineman, W. J. McAfee, and V. K. Sikka 41
 Material 43
 Variability of Hardness and Grain Size 45
 Tensile Properties 46
 Discussion 55
 Conclusions 59

Variations in Tensile Behavior of a High-Strength Titanium Alloy
 Fabricated and Heat Treated in a Heavy Section—
 R. E. Pasternak and R. Chait 65
 Materials 66
 Results and Discussion 68
 Conclusions 76

Variation in Mechanical Properties of Carbon Steel Plates and
 Wide Flange Shapes—D. C. McCune 78
 The Surveys 79
 Method of Analysis 84
 Results 88
 Summary 88

Use of the Short-Beam Shear Test for Quality Control of
 Graphite-Polyimide Laminates—W. W. Stinchcomb,
 E. G. Henneke, and H. L. Price 96
 Fabrication of Graphite-Polyimide Laminates 97
 The Short-Beam Shear Test 100
 Modified Quality Control Procedures 103
 Experimental Results 104
 Summary 108
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stress-Rupture Data Correlation with Generalized Regression Analysis:</td>
<td>110</td>
</tr>
<tr>
<td>An Alternative to Parametric Methods—D. R. Rummler</td>
<td></td>
</tr>
<tr>
<td>Stress-Rupture Data</td>
<td>112</td>
</tr>
<tr>
<td>Analysis Procedures</td>
<td>115</td>
</tr>
<tr>
<td>Results and Discussion</td>
<td>119</td>
</tr>
<tr>
<td>Conclusions</td>
<td>123</td>
</tr>
<tr>
<td>Effects of Some Variables in Specimen Selection and Procedures on</td>
<td>127</td>
</tr>
<tr>
<td>the Results of Shear Tests—J. G. Kaufman and R. E. Davies</td>
<td></td>
</tr>
<tr>
<td>Effect of Specimen Size on Double-Shear Strength</td>
<td>129</td>
</tr>
<tr>
<td>Effect of Lubrication</td>
<td>129</td>
</tr>
<tr>
<td>Variation in Shear Strength Through Plate Thickness</td>
<td>132</td>
</tr>
<tr>
<td>Clearance Between Punch and Die in Blanking-Shear Tests of Sheet</td>
<td>132</td>
</tr>
<tr>
<td>Conclusions</td>
<td>134</td>
</tr>
<tr>
<td>Statistical Aspects of Mechanical Property Assurance—</td>
<td>136</td>
</tr>
<tr>
<td>W. P. Goepert</td>
<td></td>
</tr>
</tbody>
</table>