COMPOSITE MATERIALS: TESTING AND DESIGN (FOURTH CONFERENCE)

A conference
sponsored by the
AMERICAN SOCIETY FOR TESTING AND MATERIALS
Valley Forge, Pa., 3-4 May 1976

ASTM SPECIAL TECHNICAL PUBLICATION 617
J. G. Davis, Jr., conference chairman

List price $51.75
04-617000-33

AMERICAN SOCIETY FOR TESTING AND MATERIALS
1916 Race Street, Philadelphia, Pa. 19103
NOTE

The Society is not responsible, as a body, for the statements and opinions advanced in this publication.
Foreword

The Fourth Conference on Composite Materials: Testing and Design was held 3-4 May 1976 at Valley Forge, Pa. The American Society for Testing and Materials' Committee D-30 on High Modulus Fibers and Their Composites sponsored the conference. J. G. Davis, Jr., National Aeronautics and Space Administration-Langley Research Center, served as conference chairman. Most of the papers presented at the eight sessions are included in this volume which complements the first, second, and third conference publications—ASTM STP 460, ASTM STP 497, and ASTM STP 546, Composite Materials: Testing and Design.
Related
ASTM Publications

Composite Reliability, STP 580 (1975), $49.75 (04-580000-33)

Fracture Mechanics of Composites, STP 593 (1976), $23.50 (04-593000-33)

Environmental Effects on Advanced Composite Materials, STP 602 (1976), $10.00 (04-602000-33)
A Note of Appreciation to Reviewers

This publication is made possible by the authors and, also, the unheralded efforts of the reviewers. This body of technical experts whose dedication, sacrifice of time and effort, and collective wisdom in reviewing the papers must be acknowledged. The quality level of ASTM publications is in a direct function of their respected opinions. On behalf of ASTM we acknowledge their contribution with appreciation.

ASTM Committee on Publications
Editorial Staff

Jane B. Wheeler, Managing Editor
Helen M. Hoersch, Associate Editor
Ellen J. McGlinchey, Assistant Editor
Kathleen P. Turner, Assistant Editor
Sheila G. Pulver, Assistant Editor
Contents

Introduction 1

Fracture and Fatigue

Fracture Resistance Characterization of Graphite/Epoxy Composites—
D. H. Morris and H. T. Hahn 5
Experimental Program 6
Results 7
Conclusions 15

An Experimental Study of the Fracture Behavior of Laminated
Graphite/Epoxy Composites—H. F. Brinson and Y. T. Yeow 18
Materials and Test Procedures 22
Experimental Results 22
Discussion 34

Effect of Time at Load on Fatigue Response of [(0/±45/90)_T300/5208 Graphite-Epoxy Laminate—G. P. Sendekyj and
H. D. Stalnaker 39
Experimental Results 40
Analysis of Test Results 46
Conclusions 51

Preliminary Development of a Fundamental Analysis Model for
Crack Growth in a Fiber Reinforced Composite Material—
M. F. Kanninen, E. F. Rybicki, and W. I. Griffith 53
Analysis Procedure 54
Example Computational Results and Discussion 62

Fatigue of Notched Fiber Composite Laminates: Analytical and
Experimental Evaluation—S. V. Kulkarni, P. V. McLaughlin,
Jr., R. B. Pipes, and B. W. Rosen 70
Static Failure Model 72
Fatigue Analysis 75
Experimental Program 78
Analysis/Experiment Correlation Study 84
Concluding Remarks 91
Delamination in Quasi-Isotropic Graphite-Epoxy Laminates—
K. L. REIFSNIDER, E. G. HENNEKE II, AND W. W. STINCHCOMB 93
Experimental Program 94
Results 96
Discussion and Conclusions 103

Structural Design Significance of Tension-Tension Fatigue Data on Composites—G. C. GRIMES 106
Graphite/Epoxy Fatigue 107
Hybrid Composites 113
Structural Design Significance 116
Conclusions 119

MATERIALS AND PROCESSING

Evaluation of Selected High-Temperature Thermoplastic Polymers for Advanced Composite and Adhesive Applications—
M. G. MAXIMOVICH 123
Resin Selection and Characterization 124
Graphite/300P Development 125
Graphite/PPQ 401 Development 128
Graphite Scrim/PPQ Adhesive Bonds 132
Discussion 134
Conclusions 135

Development of Multidirectional Fiber-Reinforced Plastics—
Y. SUEZAWA, M. TAKEMOTO, AND S. TAKAHASHI 137
Fabrication Method of Multidirectional Glass-Fiber Reinforced Plastics (M-D GFRP) 137
Mechanical Properties of M-D GFRP 139
Fracture Mode of M-D GFRP 143
Improvement of the Strength of M-D GFRP 144
Conclusions 150

TEST METHODS

Specimen Design and Fabrication 155
Experimental Facilities and Procedures 156
Mechanical Property Results 157
Composite Results 159
Acoustic Emission Response 160
Analysis and Conclusions 163
<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compression Testing of Large Gage Length Composite Coupons—</td>
<td>J. T. Ryder and E. D. Black</td>
<td>170</td>
</tr>
<tr>
<td>Compression Testing Procedure</td>
<td></td>
<td>172</td>
</tr>
<tr>
<td>Experimental Verification</td>
<td></td>
<td>177</td>
</tr>
<tr>
<td>Summary and Conclusions</td>
<td></td>
<td>188</td>
</tr>
<tr>
<td>Nondestructive Tests for Shear Strength Degradation of a Graphite-Epoxy Composite—</td>
<td>D. H. Kaeble and P. J. Dynes</td>
<td>190</td>
</tr>
<tr>
<td>Experimental</td>
<td></td>
<td>191</td>
</tr>
<tr>
<td>Results</td>
<td></td>
<td>199</td>
</tr>
<tr>
<td>Failure Analysis of the Split-D Test Method—</td>
<td>C. E. Knight, Jr.</td>
<td>201</td>
</tr>
<tr>
<td>Finite Element Model and Analysis</td>
<td></td>
<td>202</td>
</tr>
<tr>
<td>Results of Analysis</td>
<td></td>
<td>206</td>
</tr>
<tr>
<td>Experimental Results</td>
<td></td>
<td>212</td>
</tr>
<tr>
<td>Conclusions and Recommendations</td>
<td></td>
<td>214</td>
</tr>
<tr>
<td>Longitudinal Residual Stresses in Boron Fibers—</td>
<td>D. R. Behrendt</td>
<td>215</td>
</tr>
<tr>
<td>Experimental Test Apparatus</td>
<td></td>
<td>216</td>
</tr>
<tr>
<td>Specimen Description</td>
<td></td>
<td>218</td>
</tr>
<tr>
<td>Analysis of the Data</td>
<td></td>
<td>218</td>
</tr>
<tr>
<td>Experimental Results</td>
<td></td>
<td>219</td>
</tr>
<tr>
<td>Discussion</td>
<td></td>
<td>222</td>
</tr>
<tr>
<td>Effect of Stacking Sequence on the Notched Strength of Laminated Composites—</td>
<td>J. M. Whitney and R. Y. Kim</td>
<td>229</td>
</tr>
<tr>
<td>Experimental Program</td>
<td></td>
<td>230</td>
</tr>
<tr>
<td>Data Reduction</td>
<td></td>
<td>234</td>
</tr>
<tr>
<td>Discussion and Conclusions</td>
<td></td>
<td>238</td>
</tr>
<tr>
<td>An Analysis Model for Spatially Oriented Fiber Composites—</td>
<td>B. W. Rosen, S. N. Chatterjee, and J. J. Kibler</td>
<td>243</td>
</tr>
<tr>
<td>Background</td>
<td></td>
<td>244</td>
</tr>
<tr>
<td>Description of the Model</td>
<td></td>
<td>246</td>
</tr>
<tr>
<td>Method of Analysis</td>
<td></td>
<td>248</td>
</tr>
<tr>
<td>Property Predictions</td>
<td></td>
<td>251</td>
</tr>
<tr>
<td>Concluding Remarks</td>
<td></td>
<td>253</td>
</tr>
<tr>
<td>Empirical Crippling Analysis of Graphite/Epoxy Laminated Plates—</td>
<td>E. E. Spier and F. L. Klouman</td>
<td>255</td>
</tr>
<tr>
<td>Experimental Procedure</td>
<td></td>
<td>257</td>
</tr>
</tbody>
</table>
Orthotropic Theoretical Elastic Buckling Equations 259
Theoretical Elastic Buckling of A-S/3501 Graphite/Epoxy 264
Orthotropic Nondimensional Empirical Crippling Equations 264
Crippling Test Program 265
Empirical Crippling Curves 266
Conclusions and Recommendations 270

Statistical Distribution of Residual Strength Under Service Loads and Periodic Proof Tests 274
Service Loads and Failure Rate 277
Probability of Failure Under Periodic Proof Tests In Service 279
Numerical Examples 284
Conclusion 290

A Perturbation Solution for Interlaminar Stresses in Bidirectional Laminates—P. W. Hsu and C. T. Herakovich 296
Formulation 297
Conclusion 315

Evaluation of Composite Curing Stresses—N. J. Pagano and H. T. Hahn 317
Analytical Approach 318
Stress-Free Temperature 320
Curing Stress Experiment 321
Influence of Curing Stresses on Laminate Strength 324
Concluding Remarks 328

Lamination Residual Strains and Stresses in Hybrid Laminates—I. M. Daniel and T. Liber 330
Experimental Procedure 331
Results and Discussion 332
Summary and Conclusions 341

Tensile and Compressive Behavior of Borsic/Aluminum—C. T. Herakovich, J. G. Davis, Jr., and C. N. Viswanathan 344
Experimental Program 345
Results and Discussion 347
Conclusions 356

Boron/Aluminum Skins for the DC-10 Aft Pylon—S. Y. Elliott 358
Component Design 359
Specimen Design and Fabrication 361
Demonstration Tests 362
Tension Tests 363
Compression Tests 363
In-Plane Shear Tests 365
Interlaminar Shear Tests 365
Bolt Bearing Tests 366
Tension Fatigue Tests 366
Stress Analysis 367
Composite Skin Fabrication and Installation 369
Flight Tests 369
Conclusions 370

IMPACT

Charpy Impact of Unidirectional Graphite/Aramid/Epoxy Hybrid Composites—J. D. HELFINSTINE 375
Composite Preparation and Tests 377
Results and Discussion 379
Summary and Conclusions 387

Impact Damage in Graphite-Fiber-Reinforced Composites—L. B. GRESSZCZUK AND H. CHAO 389
Theoretical Considerations 390
Theory Application 395
Experimental Studies 401
Discussion and Conclusions 403

Impact Response of Polymer-Matrix Composite Materials—D. F. ADAMS 409
General Directions of Prior Research 410
Experimental Correlations 412
Directions of Future Research 422
Summary 423

An Analytical Method for Evaluation of Impact Damage Energy of Laminated Composites—C. T. SUN 427
Indentation Law 428
Finite Element Formulation 429
Elastic Response 432
Damage Energy 435
Conclusion 439
ENVIRONMENT

Time-Temperature-Stress Dependence of Boron Fiber Deformation—
 J. A. DiCARLO 443
 Anelasticity 444
 Flexural Deformation 446
 Axial Deformation 450
 Discussion 457
 Conclusions 462

Effects of Thermal Cycling on the Properties of Graphite-Epoxy
 Composites—V. F. MAZZIO AND R. L. MEHAN 466
 Thermally Induced Failure Mechanisms 467
 Experimental Work 468
 Conclusions 480

Moisture Effects in Epoxy Matrix Composites—C. E. BROWNING,
 G. E. HUSMAN, AND J. M. WHITNEY 481
 Experimental Procedures 482
 Effect of Absorbed Moisture on Glass Transition Temperature 484
 Prediction of Moisture Diffusion 486
 Discussion of Mechanical Properties 488
 Conclusions 495

Environmental Sensitivity Tests of Graphite-Epoxy Bolt Bearing
 Properties—D. J. WILKINS 497
 Specimen Description 497
 Moisture Conditioning 499
 Experimental Results 500
 Conclusions 507

Moisture Absorption and Desorption in Epoxy Composite Laminates—
 C. D. SHIRRELL AND J. HALPIN 514
 Theory of Diffusion 515
 Diffusion of Water in Composite Laminates 517
 Effects of Moisture Absorption 522
 Summary 527