HEAT TRANSMISSION
MEASUREMENTS
IN THERMAL
INSULATIONS

AMERICAN SOCIETY FOR TESTING AND MATERIALS
HEAT TRANSMISSION MEASUREMENTS IN THERMAL INSULATIONS

A symposium sponsored by
ASTM Committee C-16 on Thermal and Cryogenic Insulating Materials
AMERICAN SOCIETY FOR TESTING AND MATERIALS
Philadelphia, Pa., 16-17 April 1973

ASTM SPECIAL TECHNICAL PUBLICATION 544
R. P. Tye, symposium chairman

List price $30.75
04-544000-10

AMERICAN SOCIETY FOR TESTING AND MATERIALS
1916 Race Street, Philadelphia, Pa. 19103
NOTE

The Society is not responsible, as a body, for the statements and opinions advanced in this publication.
Foreword

The Symposium on Contributions of Basic Heat Transmission Measurements to the Design and Behavior of Thermal Insulation Systems was held at the American Society for Testing and Materials Headquarters in Philadelphia, Pa., on 16-17 April 1973. The symposium was sponsored by ASTM Committee C-16 on Thermal and Cryogenic Insulating Materials. R. P. Tye, Dynatech R/D Company, presided as the symposium chairman.
Related
ASTM Publications

Thermal Insulating Covers for NPS Piping, Vessel Lagging and Dished Head Segments. ASTM Recommended Practice for Prefabrication and Field Fabrication of—C 450 adjunct (1965), $4.25, 12-304500-00

Contents

Introduction

Definitions and Thermal Modelling

What Property Do We Measure—ASTM Subcommittee C16.30 5
Measurement Philosophy of Subcommittee C16-30 5
Heat Transfer 7
The Necessity of Multiple Measurements 9
Recommendations for Future Changes 11
Establishing Steady-State Thermal Conditions in Flat Slab Specimens—
C. J. Shirtliffe 13
Basic Problem 15
Common Factors in Models 15
Model Descriptions and Solutions 15
Simplification of Solutions 16
Truncation of Solutions 17
Inversion of the Solutions 22
Comparison of Settling Times 23
Accuracy of Equations 24
Conclusions 24
Mechanisms of Heat Transfer in Permeable Insulation and Their Investi-
gation in a Special Guarded Hot Plate—C. G. Bankvall 34
Measurement of Heat Transfer 35
The Guarded Hot Plate 35
Heat Transfer Mechanisms in Fibrous Insulation 40
The Natural Convective Heat Transfer 43
Summary 48
Water Vapor Diffusion and Frost in Porous Materials—A. Auracher 49
Diffusion in Porous Frost-Containing Materials 50
Diffusion on Simple, Frost-Containing Pore Models 51
Diffusion in Frost-Containing Sphere Packings 61
Discussion 66
Conclusion 67
Radiative Contribution to the Thermal Conductivity of Fibrous Insula-
tions—R. M. F. Linford, R. J. Schmitt, and T. A. Hughes 68
Nomenclature 69
Theoretical Models for Radiant Heat Transfer 70
Experimental Approach 75
Experimental Results 78
Calculation of the Radiation Transmission Component 82
Conclusions 83
Predicting Spacecraft Multilayer Insulation Performance from Heat Trans-
fer Measurements—L. D. Stimpson and W. A. Hagemeyer 85
System-Level MLI Blanket Results 87
Types of Calorimeters Used 89
The JPL Test Program 90
Discussion of Future MLI Requirements
Conclusions

Techniques

Design Criteria for Guarded Hot Plate Apparatus—F. De Ponte and P. Di Filippo
The Guarded Hot Plate
The Cold Plate
Conclusions

Suitable Steady-State Methods for Measurement of Effective Thermal Conductivity in Rigid Insulations—W. T. Engelke
Comparative Rod Apparatus
Radial Inflow Apparatus
Application
Conclusions

Thermal Conductance of Pipe Insulation—A Large-Scale Test Apparatus—L. R. Kimball
Test Procedure
Selected Experimental Results
Discussion
Conclusions

New Development in Design of Equipment for Measuring Thermal Conductivity and Heat Flow—E. Brendeng and P. E. Frivik
Nomenclature
Steady-State Measurements
Test Results
Transient State Measurements

Mathematical Analysis of Line-Heat-Source Guarded Hot Plate
Design of Proposed Apparatus
Conclusion

Calibrated Hot Box: An Effective Means for Measuring Thermal Conductance in Large Wall Sections—J. R. Mumaw
Description of Test Apparatus
Construction of Test Apparatus
Hot Side Construction Details
Cold Side Construction Details
Specimen Frame Construction
Air Infiltration Test Capability
Obtaining Proper Test Results—The Data System
Hot Side Chamber Calibration
Testing Procedure
Discussion of Testing Results
Conclusions and Recommendations

Results and Applications

Improving the Thermal Performance of the Ordinary Concrete Block—H. N. Knickle and Edgar Ducharme
Procedure
Experimental Work
Economic Analysis	220
Conclusions	221
Some Recent Experimental Data on Glass Fiber Insulating Materials and Their Use for a Reliable Design of Insulations at Low Temperatures—*D. Fournier and S. Klarsfeld*	223
Theoretical Data	224
Measurements Facilities	227
Materials Investigated and Test Procedure	230
Experimental Results	231
Some Applications of Both Theoretical Results and Experimental Data to Design Actual Insulations at Low Temperatures	235
General Conclusion	240
Evacuated Load Bearing Thermal Insulation up to 800°C—*D. J. Dickson*	243
Procedure	245
Experimental Results	248
Discussion	250
Conclusions	253
Thermal Conductivity of Evacuated Glass Beads: Line Source Measurements in a Large Volume Bead Bed Between 225 and 300 K—*M. G. Langseth, F. E. Ruccia, and A. E. Wechsler*	256
Nomenclature	257
Bead Tank Conductivity Measurements Using a Line Source	259
Heat Flow Probe and Line Source Probe Comparisons	270
Conclusions	273
Thermal Test Apparatus	277
Fabrication of Insulation Systems	280
Experimental Results	281
Discussion	285
Nomenclature	290
Experimental Procedure	292
Materials and Systems Evaluated	299
Experimental Details	300
Analytical Model	301
Results and Discussion	304
Appendix	307
Reference Materials of Low Thermal Conductivity	307
Questionnaire	309