PROGRESS IN FLAW GROWTH AND FRACTURE TOUGHNESS TESTING

Proceedings of the 1972 National Symposium on Fracture Mechanics


ASTM SPECIAL TECHNICAL PUBLICATION 536
J. G. Kaufman, symposium chairman

List price $33.25
04-536000-30
NOTE

The Society is not responsible, as a body, for the statements and opinions advanced in this publication.

Printed in Baltimore, Md.
July 1973
Foreword

Related
ASTM Publications

Fracture Toughness Testing at Cryogenic Temperatures, STP 496 (1971), $5.00, 04-496000-30

Probabilistic Aspects of Fatigue, STP 511 (1972), $19.75, 04-511000-30

Fracture Toughness, STP 514 (1972), $18.75, 04-514000-30
The Effect of Load Ratio 80
Load Ratio and Crack Closure 81
A Crack Closure Explanation of Data Trends for Load Ratio Effects 83
Direct Experimental Determination of $K_{\text{c}}$ 86
Conclusions 90

**Overload Effects on Subcritical Crack Growth in Austenitic Manganese Steel—R. C. Rice and R. I. Stephens** 95
Nomenclature 95
Material and Test Procedures 97
Test Results 101
Discussion and Results 108
Conclusions 111
Discussion 113

**Effect of Multiple Overloads on Fatigue Crack Propagation in 2024-T3 Aluminum Alloy—V. W. Trebules, Jr., R. Roberts, and R. W. Hertzberg** 115
Nomenclature 115
Experimental Procedures 118
Testing Procedure 119
Test Results 120
Summary and Interpretation of the Multiple Overload Curve Using Closure Concepts 139

**Fatigue-Crack Growth Under Variable-Amplitude Loading in ASTM A514-B Steel—J. M. Barsom** 147
Material and Experimental Work 149
Results and Discussion 155
General Discussion 161
Summary 162

**Temperature and Environment**

**Effect of a Loading Sequence on Threshold Stress Intensity Determination—W. C. Harrigan, Jr., D. L. Dull, and L. Raymond** 171
Experimental Procedure 172
Results 174
Discussion 178
Conclusions 180
CONTENTS

Fatigue and Corrosion-Fatigue Crack Growth of 4340 Steel at Various Yield Strengths—E. J. Imhof and J. M. Barsom
Materials and Experimental Work 183
Results and Discussion 192
Summary 204

Fatigue Crack Propagation and Fracture Toughness of 5Ni and 9Ni Steels at Cryogenic Temperatures—R. J. Bucci, B. N. Greene and P. C. Paris
Materials 208
Specimens 211
Test Apparatus and Experimental Procedures 212
Experimental Results and Discussion 216
Summary 226

Methods

The Double Edge Notched Plate in Tension 233
The Internally Notched Plate in Tension 234
The Notched Round Bar in Tension 235
The Remaining Uncracked Ligament Subject to Bending 235
Charpy and “Equivalent Energy” Toughness Measures 237
Estimates of J From Single Points on Load Displacement Records 238
Summary 244

A Comparison of the J-Integral Fracture Criterion with the Equivalent Energy Concept—J. A. Begley and J. D. Landes
J-Integral 247
The Equivalent Energy Concept 248
$J_{lc}$ and the Equivalent Energy Procedure in the Linear Elastic Range 250
The Lower Bond Equivalent Energy Procedure and Approximate J-Solutions 251
$J_{lc}$ and Equivalent Energy for a General Load Versus Load Point Displacement Curve 253
Examination of the Condition for Agreement of $J_{lc}$ and the Equivalent Energy Procedure 255
A Graphical Interpretation of the Constant $J/A$ Condition 258
Summary and Conclusions 259
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analytical Applications of the J-Integral—J. G. Merkle</td>
<td>264</td>
</tr>
<tr>
<td>Nomenclature</td>
<td>264</td>
</tr>
<tr>
<td>Current Approaches to the Development of Elastic-Plastic Fracture</td>
<td>267</td>
</tr>
<tr>
<td>Analysis</td>
<td></td>
</tr>
<tr>
<td>Discussion and Conclusions</td>
<td>279</td>
</tr>
<tr>
<td>Experimental Verification of Lower Bond $K_{IC}$ Values Utilizing the</td>
<td>281</td>
</tr>
<tr>
<td>Equivalent Energy Concept—C. Buchalet and T. R. Mager</td>
<td></td>
</tr>
<tr>
<td>Equivalent Energy Method</td>
<td>282</td>
</tr>
<tr>
<td>Materials, Specimens, and Test Procedure</td>
<td>285</td>
</tr>
<tr>
<td>Method of Analyzing the Test Data</td>
<td>285</td>
</tr>
<tr>
<td>Experimental Results</td>
<td>286</td>
</tr>
<tr>
<td>Discussion</td>
<td>291</td>
</tr>
<tr>
<td>A Method for Measuring $K_{IC}$ at Very High Strain Rates—D. A.</td>
<td>297</td>
</tr>
<tr>
<td>Shockey and D. R. Curran</td>
<td></td>
</tr>
<tr>
<td>A Method for Achieving Very High Crack-Tip Loading Rates</td>
<td>298</td>
</tr>
<tr>
<td>Experimental Procedure</td>
<td>300</td>
</tr>
<tr>
<td>Results</td>
<td>303</td>
</tr>
<tr>
<td>Discussion</td>
<td>306</td>
</tr>
<tr>
<td>Summary</td>
<td>309</td>
</tr>
<tr>
<td>Influence of Stress Intensity Level During Fatigue Precracking on</td>
<td>312</td>
</tr>
<tr>
<td>Results of Plane-Strain Fracture Toughness Tests—J. G. Kaufman</td>
<td></td>
</tr>
<tr>
<td>and P. E. Schilling</td>
<td></td>
</tr>
<tr>
<td>Material</td>
<td>313</td>
</tr>
<tr>
<td>Test Procedure</td>
<td>314</td>
</tr>
<tr>
<td>Results and Discussion</td>
<td>315</td>
</tr>
<tr>
<td>Conclusions</td>
<td>319</td>
</tr>
<tr>
<td>Influence of Sheet Thickness upon the Fracture Resistance of Structural Aluminum Alloys—A. M. Sullivan, J. Stoop, and C. N. Freed</td>
<td>323</td>
</tr>
<tr>
<td>Experimental Parameters</td>
<td>324</td>
</tr>
<tr>
<td>Geometrical Dependencies of $K_c$</td>
<td>326</td>
</tr>
<tr>
<td>Applicability of a Model for the Sheet Thickness Dependency of $K_c$</td>
<td>329</td>
</tr>
<tr>
<td>Thickness Reduction and Crack-Tip Opening</td>
<td>330</td>
</tr>
<tr>
<td>Critical Crack Length at Various Levels of Operating Stress</td>
<td>331</td>
</tr>
<tr>
<td>Summary</td>
<td>332</td>
</tr>
</tbody>
</table>
CONTENTS ix

Plane-Stress Fracture Toughness and Fatigue-Crack Propagation of Aluminum Alloy Wide Panels—D. Y. Wang
Test Program 334
Discussion 340
Conclusions 349

Fracture Toughness of Plain and Welded 3-In.-Thick Aluminum Alloy Plate—F. G. Nelson and J. G. Kaufman
Material 350
Procedure 353
Discussion of Results 357
Summary and Conclusions 374

Dynamic Tear Tests in 3-In.-Thick Aluminum Alloys—R. W. Judy, Jr., and R. J. Goode
Materials and Procedures 377
Discussion of Results 380
Conclusions 389

Structure of Polymers and Fatigue Crack Propagation—R. W. Hertzberg, J. A. Manson, and W. C. Wu
Experimental Procedure 391
Experimental Results and Discussion 394
Conclusions 401

Effects of Strain Gradients on the Gross Strain Crack Tolerance of A533-B Steel—P. N. Randall and J. G. Merkle
Procedure 404
Experimental Results 411
Discussion 415
Conclusion 419

Applications

Applications of the Compliance Concept in Fracture Mechanics—H. Okamura, K. Watanabe, and T. Takano
Deformation of a Cracked Member 423
Analysis of Statically Indeterminate Structure Containing a Cracked Member 427
Extension to the Multiple Loads 430
Analogy by Equivalent Electric Circuit 432
Application to the Vibration of Cracked Member 432
Deformation and Strength of Cracked Column Under Eccentric Load 433
Fatigue Crack Propagation and Final Fracture Under Various Constraint Conditions at the Ends 435
Application to the Arrest of Brittle Fracture 436
Conclusion 438

Fracture Mechanics Technology for Optimum Pressure Vessel Design—
J. G. Bjeletich and T. M. Morton 439
Review of Fracture Mechanics 441
Discussion: Vessel Design Optimization 442

Failure Stress Levels of Flaws in Pressurized Cylinders—
J. F. Kiefner, W. A. Maxey, R. J. Eiber, and A. R. Duffy 461
Description of the Experiments 462
Analysis of the Experiments 463
Summary 480

Experimentally Determined Shape Factors for Deep Part-Through Cracks in a Thick-Walled Pressure Vessel—R. W. Derby 482
Procedure 483
Results 484
Discussion 488
Summary and Conclusions 490