METAL FATIGUE DAMAGE—MECHANISM, DETECTION, AVOIDANCE, AND REPAIR
With Special Reference to Gas Turbine Components

S. S. Manson, editor

ASTM SPECIAL TECHNICAL PUBLICATION 495

List price $21.00
04-495000-30

AMERICAN SOCIETY FOR TESTING AND MATERIALS
1916 Race Street, Philadelphia, Pa. 19103
NOTE

The Society is not responsible, as a body, for the statements and opinions advanced in this publication.
Foreword

The work presented in the publication *Metal Fatigue Damage—Mechanism, Detection, Avoidance, and Repair* was sponsored by the ASTM-ASME Joint Committee on the Effect of Temperature on the Properties of Metals and financed by The Metal Properties Council. The Applied Research Panel under the Chairmanship of M. Semchyshen and the Gas Turbine Panel Chaired by G. J. Wile, cooperated in this project. Mr. S. S. Manson, who headed the Task Group under the Applied Research Panel, was responsible for the coordination of the papers presented in this publication.
Related
ASTM Publications

Fatigue at High Temperature, STP 459 (1969), $11.25
Effects of Environment and Complex Load History on Fatigue Life, STP 462 (1970), $22.00
Achievement of High Fatigue Resistance in Metals and Alloys, STP 467 (1970), $28.75
Contents

Introduction 1
Fatigue Mechanisms in the Sub-Creep Range—J. C. Grosskreutz 5
Mechanisms of Fatigue in the Creep Range—C. H. Wells, C. P. Sullivan, and M. Gell 61
Fatigue Damage Detection—J. R. Barton and F. N. Kusenberger 123
Avoidance, Control, and Repair of Fatigue Damage—S. S. Manson 254