© BY AMERICAN SOCIETY FOR TESTING AND MATERIALS 1970
Library of Congress Catalog Card Number: 70-114701

Note—The Society is not responsible, as a body, for the statements and opinions advanced in this publication.
FOREWORD

The science of soil mechanics is a complex one, due to the very nature of the materials involved, which vary not only geographically but locally as well. This variability of soils makes it especially difficult to develop standard methods of test that can be universally used for evaluating the engineering properties of soils. The science of rock mechanics is also complex and the development of widely accepted test methods is relatively new.

ASTM Committee D-18 on Soil and Rock for Engineering Purposes has sponsored this publication, which covers many suggested methods of test that have generally received wide recognition in the United States. A good many of these methods may ultimately become ASTM standards. All existing ASTM standards on testing soils, which standards are the result of general agreement and acceptance, are referenced in this publication and are published in the Annual Book of ASTM Standards, Part 11. This publication is considered to be the only one that brings together in convenient form all of these various methods now in current use.

The soil test procedures are grouped into 14 categories, each pertaining to related phases of soil testing and the subcommittee structure of Committee D-18, as follows:

Section I—Soil and Foundation Engineering Studies—General
Section II—Surface and Subsurface Reconnaissance
Section III—Sampling and Related Field Testing for Soil Investigation
Section IV—Texture, Plasticity, and Density Characteristics of Soils
Section V—Permeability and Capillarity Properties of Soils
Section VI—Structural Properties of Soils
Section VII—Physicochemical Properties of Soils
Section VIII—Identification and Classification of Soils
Section IX—Special and Construction Control Tests
Section X—Dynamic Properties of Soils
Section XI—Bearing Tests of Soils in Place
Section XII—Deep Foundations
Section XIII—Rock Mechanics
Section XIV—Nomenclature for Soil and Rock Mechanics

This special compilation was first published in 1944, with a second printing of the first edition being required. The second edition was published in 1950, the third edition in 1958, and the fourth edition in 1964. This fifth edition represents a complete review in which certain test procedures were deleted and new methods added, based on current use. Other methods have been revised to bring them up to date. Standards and tentatives have, however, been deleted, requiring that the user also rely on Part 11 of the Annual Book of ASTM Standards for a complete reference to available test methods.

Credit for bringing this group of soil test methods up to date is due the subcommittee chairmen and present and past officers of Committee D-18, and especially John P. Gnaedinger who served as Editor, and W. G. Holtz who served as Assistant Editor.
FOREWORD

Officers of Committee D-18

C. B. Crawford, Past-Chairman B. S. Coffman, Second Vice-Chairman
A. A. Wagner, Chairman W. G. Shockley, Secretary
E. B. Hall, First Vice-Chairman T. K. Liu, Membership Secretary

SUBCOMMITTEE CHAIRMEN

C. P. Fisher, Subcommittee 1, Surface and Subsurface Reconnaissance
R. H. Howe, Subcommittee 2, Sampling and Related Field Testing for Soil Investigation
J. E. Mitchell, Subcommittee 3, Texture, Plasticity, and Density Characteristics of Soils
A. I. Johnson, Subcommittee 4, Permeability and Capillarity Properties of Soils
E. B. Hall, Subcommittee 5, Structural Properties of Soils
N. O. Schmidt, Subcommittee 6, Physicochemical Properties of Soils
T. H. Thornburn, Subcommittee 7, Identification and Classification of Soils
B. S. Coffman, Subcommittee 8, Special and Construction Control Tests
E. T. Selig, Subcommittee 9, Dynamic Properties of Soils
G. F. Weissmann, Subcommittee 10, Bearing Tests of Soils in Place
E. D'Appolonia, Subcommittee 11, Deep Foundations
E. J. Deklotz, Subcommittee 12, Rock Mechanics
A. I. Johnson, Subcommittee G-3, Nomenclature for Soil and Rock Mechanics

November 1969
RELATED ASTM PUBLICATIONS

The American Society for Testing and Materials has issued special technical publications and other publications which may be of particular interest to the users of this compilation of Special Procedures for Testing Soil and Rock for Engineering Purposes. These are as follows:

<table>
<thead>
<tr>
<th>Publication Name</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load Tests of Bearing Capacity of Soils—STP 79 (1947)</td>
<td>$6.20*</td>
</tr>
<tr>
<td>Triaxial Testing of Soils and Bituminous Mixtures—STP 106 (1949-1950)</td>
<td>$12.35*</td>
</tr>
<tr>
<td>Identification and Classification of Soils—STP 113 (1950)</td>
<td>$3.35*</td>
</tr>
<tr>
<td>Surface and Subsurface Reconnaissance—STP 122 (1951)</td>
<td>$8.20*</td>
</tr>
<tr>
<td>Consolidation Testing of Soils—STP 126 (1951)</td>
<td>$4.60*</td>
</tr>
<tr>
<td>Direct Shear Testing of Soils—STP 131 (1952)</td>
<td>$3.75*</td>
</tr>
<tr>
<td>Use of Radioisotopes in Soil Mechanics—STP 134 (1952)</td>
<td>$3.00*</td>
</tr>
<tr>
<td>Exchange Phenomena in Soils—STP 142 (1952)</td>
<td>$3.20*</td>
</tr>
<tr>
<td>Bibliography of Publications on Soil Dynamics—STP 146 (1952)</td>
<td>$3.00*</td>
</tr>
<tr>
<td>Lateral Load Tests on Piles—STP 154 (1953)</td>
<td>$7.30*</td>
</tr>
<tr>
<td>Lateral Load Tests on Piles, Supplement—STP 154A (1954)</td>
<td>$7.30*</td>
</tr>
<tr>
<td>Dynamic Testing of Soils—STP 156 (1953)</td>
<td>$10.70*</td>
</tr>
<tr>
<td>Permeability of Soils—STP 163 (1954)</td>
<td>$5.70*</td>
</tr>
<tr>
<td>Vane Shear Testing of Soils—STP 193 (1956)</td>
<td>$3.05*</td>
</tr>
<tr>
<td>Papers on Soils—STP 206 (1956)</td>
<td>$7.40*</td>
</tr>
<tr>
<td>Conference on Soils for Engineering Purposes (Mexico)—STP 232 (1958)</td>
<td>$20.30*</td>
</tr>
<tr>
<td>Application of Soil Testing in Highway Design and Construction—STP 239 (1958)</td>
<td>$5.40*</td>
</tr>
<tr>
<td>Nuclear Methods for Measuring Soil Density and Moisture—STP 293 (1960)</td>
<td>$4.50*</td>
</tr>
<tr>
<td>Soil Dynamics—STP 305 (1961)</td>
<td>$4.20*</td>
</tr>
<tr>
<td>Field Testing of Soils—STP 322 (1962)</td>
<td>$15.00*</td>
</tr>
<tr>
<td>Soil Exploration—STP 351 (1963)</td>
<td>$6.45*</td>
</tr>
<tr>
<td>Compaction of Soils—STP 377 (1965)</td>
<td>$7.00</td>
</tr>
<tr>
<td>Laboratory Shear Testing of Soils—STP 381 (1965)</td>
<td>$24.50</td>
</tr>
<tr>
<td>ASTM Journal of Materials, December 1968 (This lecture has been reprinted as Water Resources Technical Publication Report No. 17 by the U. S. Government Printing Office, Washington, D.C. The cost is 55c)</td>
<td>$10.50</td>
</tr>
<tr>
<td>Determination of Stress in Rock—A State-of-the-Art Report—STP 429 (1966)</td>
<td>$4.75</td>
</tr>
<tr>
<td>Use of Nuclear Meters in Soils Investigations: A Summary of Worldwide Research and Practice—STP 412 (1968)</td>
<td>$8.75</td>
</tr>
<tr>
<td>Vibration Effects of Earthquakes on Soils and Foundations—STP 450 (1969)</td>
<td>$18.50</td>
</tr>
</tbody>
</table>

A list of ASTM Publications is available on request.

*Copies are no longer available from ASTM but may be obtained on microfilm from University Microfilms, Inc., 300 N. Zeeb Road, Ann Arbor, Mich. 48106.
CONTENTS

Introduction to Soil and Rock Testing ... 1

I—Soil and Foundation Engineering Studies—General

Suggested Recommended Practice for:
Conduct of Soil and Foundations Engineering Investigations—W. G. Holtz 23

II—Surface and Subsurface Reconnaissance

Recommended Practice for:
Investigating and Sampling Soils and Rock for Engineering Purposes (D 420 - 69)*

Suggested Methods for:
Subsurface Testing by Electrical Resistivity Measurements—T. W. Van Zelst 32
Aerial Photo Interpretation for Engineering Reconnaissance—A. G. Franklin 36
Geologic Reconnaissance of Construction Sites—A. I. Johnson 43

III Sampling and Related Field Testing for Soil Investigation

Standard Methods for:
Soil Investigation and Sampling by Auger Borings (D 1452 - 65)*
Penetration Test and Split-Barrel Sampling of Soils (D 1586 - 67)*
Thin-Walled Tube Sampling of Soils (D 1587 - 67)*

Tentative Methods for:
Diamond Core Drilling for Site Investigation (D 2113 - 62 T)*
Field Vane Shear Test in Cohesive Soil (D 2573 - 67 T)*

Suggested Methods for:
Dynamic-Cone Soil Penetration Test—Subcommittee 2 62
Measuring Water Level in Boroholes—E. J. Zegarra 64
Penetration Test in Gravelly Soils—W. C. Hill .. 66
Soil Investigation and Sampling by Hollow-Stem Auger Borings—H. E. Davis 69
Deep Static-Cone Penetration Test—J. H. Schmertmann 71
Subsurface Exploration Recording—E. J. Zegarra 78
Screw-Plate Load Test—J. H. Schmertmann ... 81

IV—Texture, Plasticity and Density Characteristics of Soils

Standard Specification for:
Wire-Cloth Sieves for Testing Purposes (E 11 - 61)*

Standard Methods of Test for:
Amount of Material in Soils Finer Than the No. 200 Sieve (D 1140 - 54 (1965))*
Dry Preparation of Soil Samples for Particle-Size Analysis and Determination of Soil Constants (D 421 - 58 (1965))*
Moisture-Penetration Resistance Relations of Fine Grained Soils (D 1558 - 63 (1969))*
Plastic Limit and Plasticity Index Soils (D 424 - 59 (1965))*
Shrinkage Factors of Soils (D 427 - 61 (1967))*
Specific Gravity of Soils (D 854 - 58 (1965))*
Particle-Size Analysis of Soils (D 422 - 63)*

* See Annual Book of ASTM Standards, Part 11.
* See Annual Book of ASTM Standards, Part 30.
CONTENTS

Standard Methods of Test for:

Laboratory Determination of Moisture Content of Soil (D 2216 - 66)
Liquid Limits of Soils (D 423 - 66)
Wet Preparation of Soil Samples for Grain-Size Analysis and Determination of Soil Constants (D 2217 - 66)
Calibration of Mechanical Laboratory Soil Compactors (D 2168 - 66)
Centrifuge Moisture Equivalent of Soils (D 425 - 69)
Moisture-Density Relationships of Soils Using 5.5-lb Rammer and 12-in. Drop (D 698 - 70)
Moisture-Density Relationships of Soils Using 10-lb Rammer and 18-in. Drop (D 1557 - 70)
Relative Density of Cohesionless Soils (D 2049 - 69)

Suggested Methods of Test for:

Mechanical Method for Breaking up Soil Aggregations—C. M. Johnston and J. R. Blystone
Grain Size Analysis of Soil by Elutriation—W. H. Mills, Jr.
Amount of Material Finer than the No. 200 Sieve in Aggregates and Soils—H. H. Brown and W. G. O'Hara
Liquid Limit of Soils Using One-Point Data, Securing the—F. R. Olmstead
Cohesiveness of Nonplastic Granular Soils—C. K. Preus
Preparing Specimens of Granular Cohesive Mixtures for Physical Tests—W. S. Housel
Moisture-Density Relationships of Soils Using Harvard Compaction Apparatus—S. D. Wilson

Moisture-Density Relations of Soils (California Method)—F. N. Hveem
Moisture-Density Relations of Gravelly Soils—A. A. Wagner
Correcting Maximum Density and Optimum Moisture Content of Compacted Soils for Oversize Particles—N. W. McLeod
Maximum and Minimum Densities of Granular Soils—D. M. Burmister
Maximum Density of Granular Materials by the Cone Test—W. S. Housel
Maximum Density of Noncohesive Soils and Aggregates—J. T. Pauls and J. F. Goode
Minimum Density of Noncohesive Soils and Aggregates—E. G. Yemington
Plotting Grain Size Curves from Hydrometric Test Data, A Direct Method for—R. C. Dick

Correction for Coarse Particles in the Soil Compaction Test—(AASHO T 224 - 67)
Aggregate Degradation—W. C. Hill

V—Permeability and Capillarity Properties of Soils

Standard Methods of Test for:

Capillary-Moisture Relationships for Soils (Moisture Tensions Between 0.1 and 1.0 Atmosphere) (D 2325 - 68)
Permeability of Granular Soils (Constant Head) (D 2434 - 68)

Suggested Methods of Test for:

Coefficient of Permeability of Soils with Values Less than 1 ft per Day—C. L. Sawyer
Coefficient of Permeability of Soils with Values Greater than 1 ft per Day—E. S. Barber and E. G. Yemington
Permeability of Undisturbed Soil or Rock Specimens—W. G. Holtz
Permeability of Porous Granular Materials by the Falling-Head Permeameter—Hamilton Gray

Constant-Head Permeability of Granular and Semigranular Soils—Ohio State Highway Testing Laboratory
Permeability and Settlement of Disturbed Soils—C. W. Jones
Permeability and Capillarity of Soils and Soil Mixtures—W. S. Housel
Capillary-Moisture Relationships for Soils by Pressure-Membrane Apparatus (Moisture Tensions Between 1 and 15 Atmospheres)—A. I. Johnson
Infiltration Rate in Field Using Double-Ring Infiltrometers—A. I. Johnson
Capillary Wetting of Soils Specimens (Compacted and Undisturbed)—J. E. Hunt

VI—Structural Properties of Soils

Standard Methods of Test for:

Unconfined Compressive Strength of Cohesive Soil (D 2166 - 66)
One-Dimensional Consolidation Properties of Soils (D 2435 - 70)
CONTENTS

Standard Methods of Test for:
Unconsolidated Undrained Strength of Cohesive Soils in Triaxial Compression (D 2850 - 70)*

Suggested Methods of Test for:
One-Dimensional Expansion and Uplift Pressure of Clay Soils—W. G. Holtz ...
Saturated Samples of Cohesive Soil for Strength Tests, Obtaining—L. E. Gregg ...
Triaxial Compressive Strength of Soils—Harold Allen and C. L. Sawyer ...
Triaxial Compression of Soils—R. D. Finney ...
Internal Friction and Cohesion Values of Soils and Soil Mixtures by Triaxial Loading—W. G. Holtz and O. A. Noell ...
Internal Stability of Granular Soils and Stabilized Mixtures (Stabilometer Test)—W. S. Houssel ...
Consolidated Drained Direct Shear Test of Soils—Subcommittee 5
Ultimate Shearing Resistance of Cohesive Clay Soils—W. S. Houssel ...
Ultimate Shearing Resistance of Granular Soils and Stabilized Mixtures—W. S. Houssel ...

VII—Physicochemical Properties of Soils

Suggested Methods of Test for:
Hydrogen Ion Concentration (pH) of Soils—W. S. Houssel ...
Thermal Resistivity of Soil by the Thermal Probe—H. F. Winterkorn ...
Organic Carbon Content of Soil by Wet Combustion—N. O. Schmidt ...
Estimating Specific Surface—Subcommittee 6 ...
Organic Matter Content of Soils by Redox Titration—W. L. Rankin ...
Soluble Salts in Soil—R. Terrence Martin ...
Applications of X-ray Diffraction of Clay Structural Analysis to the Understanding of the Engineering Behavior of Soils—C. A. Moore ...
Techniques for Measuring the Fabric of Engineering Soils—C. A. Moore ...

VIII—Identification and Classification of Soils

Standard Methods for:
Classification of Soils for Engineering Purposes (D 2487 - 69)*
Recommended Practice for:
Description of Soils (Visual Manual Procedure) (D 2488 - 69)*

Suggested Methods of Test for:
Identification of Soils—D. M. Burmister ...
Classification of Soils and Soil-Aggregate Mixtures for Highway Construction Purposes (AASHO M 145-66 I) ...
Pedological Classification of Soils—Michigan Department of State Highways ...
Identifying Soils by a Triangle Based on Unified Soil Classification System—Jack McMinn ...
Field Description of Muskeg, Guide to a—I. C. McFarlane ...
Review of Engineering Soil Classification Systems—T. K. Liu ...

IX—Special and Construction Control Tests

Standard Specifications for:
Materials for Soil-Aggregate Subbase, Base, and Surface Courses (D 1241 - 68)*

Standard Methods of Test for:
Making and Curing Soil-Cement Compression and Flexure Test Specimens in the Laboratory (D 1632 - 63 (1968))*
Compressive Strength of Molded Soil-Cement Cylinders (D 1633 - 63 (1968))*
Compressive Strength of Soil-Cement Using Portions of Beams Broken in Flexure (Modified Cube Method) (D 1634 - 63 (1968))*
Flexural Strength of Soil-Cement Using Simple Beam with Third-Point Loading (D 1635 - 63 (1968))*
Wetting-and-Drying Tests of Compacted Soil-Cement Mixtures (D 559 - 57 (1965))*
Freezing-and-Thawing Tests of Compacted Soil-Cement Mixtures (D 560 - 57 (1965))*
Standard Methods of Test for:

Cement Content of Soil-Cement Mixtures (D 806 - 57 (1965))
Soil-Bituminous Mixtures (D 915 - 61 (1967))
Density of Soil in Place by the Sand-Cone Method (D 1556 - 64 (1968))
Density of Soil in Place by the Rubber-Balloon Method (D 2167 - 66)
Bearing Ratio of Laboratory-Compacted Soils (D 1883 - 67)
Water-Soluble Chlorides Present as Admixes in Graded Aggregate Road Mixes (D 1411 - 69)
Sand Equivalent Value of Soils and Fine Aggregate (D 2419 - 69)
Resistance R-Value and Expansion Pressure of Compacted Soils (D 2844 - 69)

Suggested Methods of Test for:

Volume Change of Soils—W. F. Abercrombie 383
Density of Soil in Place Using the Washington Densometer—H. W. Humphres 385
Preparing Samples of Stabilization Materials and Stabilized Mixes by Washing—R. D. Finney 392
Volume Change and Absorption in Stabilized Mixtures—W. S. Housel 394
Water Absorption, Volume Change, and Stability of Mixtures of Tar and Soil—B. A. Anderton 398
Field Procedure for the Design of Cutback Asphalt Soil Mixtures—A. Holmes and E. W. Klinger 404
Determining Suitable Proportions of Soil-Asphalt or Soil-Aggregate-Asphalt—O. W. Hovis 410
Stability of Mixtures of Soils and Liquid Asphaltic Products—R. R. Thurston 412
Quantity of the Cutback Asphalt for Stabilizing Sandy Soils—L. W. Heriot 418
Bearing Value of Sand-Asphaltic Mixtures—C. L. McKesson 420
Evaluating Tar-Soil Mixtures—E. O. Rhodes 423
Suggested Mixture Design Procedure for Lime-Treated Soils—M. R. Thompson 430
Cement Content of Freshly Mixed Soil-Cement Mixtures—Subcommittee 8 441
Bearing Power of Soil by Means of a Cone Machine—Keith Boyd 445
Rapid Determination of Approximate Moisture Content of Soils for Field Control of Embankment Construction—P. C. Smith 447
Complex Moduli of Soils and Asphaltic Concretes in Compression—B. S. Coffman 460
Density of Soil and Soil-Aggregate in Place by Nuclear Methods (Shallow Depth)—Section G, Subcommittee 8 480
Moisture Content of Soil and Soil-Aggregate in Place by Nuclear Methods (Shallow Depth)—C. H. Shepard 490
Density of Soil in Place by the Drive-Cylinder Method—J. W. Guinee and L. M. Womak 496
Rapid Compaction Control—J. W. Hilf 502

XI—Dynamic Properties of Soils

Suggested Methods of Test for:

Shear Modulus and Damping of Soils by the Resonant Column—B. O. Hardin 516
Soil Shear Moduli by In Situ Vibratory Techniques—G. F. Weissmann 547
Vibratory Test Techniques for Determination of Properties of Soils In Situ, Some Notes on—R. K. Bernhard 552

XI—Bearing Tests of Soil in Place

Standard Methods of Test for:

Nonrepetitive Static Plate Load Tests of Soils and Flexible Pavement Components for Use in Evaluation and Design of Airport and Highway Pavements (D 1196 - 64)
Repetitive Static Plate Load Tests of Soils and Flexible Pavement Components for Use in Evaluation and Design of Airport and Highway Pavements (D 1195 - 64)
Bearing Capacity of Soil for Static Load on Spread Footings (D 1194 - 57 (1966))

Suggested Methods of Test for:

Bearing Ratio of Soils in Place—Subcommittee 10 562
Load-Deflection Characteristics of Pavement Systems by Means of the Benkelman Beam—Subcommittee 10 568
XII—Deep Foundations

Standard Methods of Test for:
- Load-Settlement Relationship for Individual Vertical Piles Under Static Axial Load (D 1143 - 69)

Suggested Methods of Test for:
- Load Capacity of Batter Pile Frames—Bureau of Yards and Docks, USN
- Load-Deflection Relationship for Individual Piles Using a Constant Rate of Penetration—Subcommittee 11
- Load-Deflection Relationship of Pile Groups—Subcommittee 11
- Load-Deflection Relationship for Individual Piles Under Axial Tensile Load—Subcommittee 11
- Load-Deflection Relationship for Individual Piles Under Lateral Load—Subcommittee 11
- Load-Deflection Relationship of a Batter Pile Frame Under Lateral Load—Subcommittee 11

XIII—Rock Mechanics

Standard Methods of Test for:
- Triaxial Compressive Strength of Undrained Rock Core Specimens Without Pore Pressure Measurements (D 2664 - 67)
- Laboratory Determination of Ultrasonic Pulse Velocities and Elastic Constants of Rock (D 2845 - 69)

Suggested Methods of Test for:
- Triaxial Compressive Strength of Undrained Rock Core Specimens with Induced Pore Pressure Measurements—W. J. Heck
- Direct Shear Strength of Rock Core Specimens—J. D. Kenty
- In Situ Shear Strength Testing of Rock—R. K. Dodds

XIV—Nomenclature for Soil and Rock Mechanics

Standard Definitions of:
- Soil and Rock Mechanics, Terms and Symbols Relating to (D 653 - 67)

Suggested Symbols:
- Symbols for Soil Mechanics Terms—Subcommittee G-3