Subject Index

A

AAS. See Atomic absorption spectroscopy
Absorbability, 11
Acadia tansa, 405
Acenaphthene, 153(table, 154(fig)
Acid digestion and analysis, 104, 144
Acid precipitation, 20, 97
Acid preservation: suspended sediments, 109(table)
Acid rain, 20, 97
Acidification, 97, 108
Adsorbents, interaction between sediments and metal contaminants, 16
Adsorption, 97
Adsorption constants, 16
Agency Sludge Task Force, EPA, 9
Agricultural lands: municipal sludge disposal, 467-468
Air contamination, 472
Air elutriators, 123, 124(table)
Air elutriators vs pipet analysis procedures: size distribution, 125(table)
Air quality: landfilling impact, 148
AKRIP: kriging computer programs, 60
Aldehydes, 159
Algae, 458
Algal bioassays for estimates of available phosphorous, 71, 73(fig), 76(fig), 77-78, 79(fig)
Alkaline wastes, 132
Aluminum, 110
Ammonia, 412
Anaerobically digested sewage sludge, 98, 261-262
Analytical Chemistry Committee(CMAC), 27
Analytical methods bibliographic, 20-21
chemical and biological analyses of sediments, 18-20
chemicals in municipal sludge: risk assessment, 466-467
drilling fluids, 229-231
metals, 316
ocean disposal of sludge: risk assessment, 470
organic halides, 177, 182(tables)
pyrolysis, 229
quality control, 35-39
risk assessment, 466-467
sludge, 141
sludge disposal: risk assessment, 476
Analytical methods and techniques, 104-105, 112, 139, 149, 152
Analytical methods development formaldehyde determination, 159
organic compounds, 184-187, 188(table)
Analytical models, 478
Analytical procedures: blanks, quality control, 36-37
Analytical procedures: organic halides, 177, 182(tables)
Analytical standards, quality control, computerization, 37-39
Analytical techniques for inorganic constituents, 30(table)
Anthropogenic pollution: sampling bed sediments, 114
Antimony, 103
Aquatic environment: hazards associated with marine disposal of sediments, 14, 81
Aquatic life toxicity, 414
Aquatic organisms: chemical contaminants, 403
Aquatic sediments metals extraction techniques, 81-82
phosphorous extraction techniques, 70-71
Aquatic settlements: size distribution, 123
Aquatic systems, 69
Aquatic systems: sediment analysis 103, 184
Aquatic systems: trace metals, 102
Aquatic toxicology, 326
Aquous phase toxicity of cadmium, 17
Aquifer microbiota, 312
Aromatic hydrocarbon contaminants, 313, 418
Arsenic, 103
Arthur Kill: toxic water content, 403
ASTM Standards
D-19:24:04, 265
D-76T, draft no. 5, 190
Atomic absorption spectroscopy (AAS), 110, 117, 144
Automated data interpretations for PCB determinations, 211

B
Backflush-filtration, 104, 106, 112
Bacteria in sediments, 312
Bahco Microparticle Classifier: air elutriator, 123
Baie des Chaleurs, sampling site for marine sediment reference material, 29
Barite: catalytic/sorptive effects, 233, 239, 242
Barite: use to trace drilling fluids in marine environments, 229
Barium: sedimentary distribution, 229
Batch centrifugation, 104, 108, 112
BAP: See Bioavailable Particulate Phosphate
BCSS-1, marine sediment reference material, 29, (table)
Beckton sludge, metal concentrations, 94-100
Bed sediment trace metal data, 115
Beef extract sonication method: virus recovery from sludge, 268(table)
Benchmark sediment bioassay, 397
Benthic communities
microbiota: biochemical characteristics, 312, 324
organism sensitivity studies, 16-17
oxygen demand, 438
oxygen flux (BOF), 451, 456, 459
oxygen production, 455
photosynthesis, 451
structure, 420, 423, 424(table), 432-433(fig)
Benthos, 418, 427-430(table)
Bentonite: catalytic/sorptive effects, 233, 239
Benzidine, 4
Beryllium, 103
Bibliography, analytical methodology for chemical and biological analysis of sediments, 20-21
Bibliography, formaldehyde determination, 164-166
Bioaccumulation, 213, 418
Bioassay methods, 392-393
Bioassay procedures: use of dual culture diffusion apparatus (DCDA), 71
Bioassays, 392-393, 395-397, 410-411, 419
Bioassays: freshwater and saltwater, 16, 69, 334
Bioavailability, 69, 213
Bioavailable particulate phosphate (BAP), 70, 75, 76(table, fig)
Biochemical analysis, 313-314, 316(table), 318(table), 320
Biochemical characteristics, 324
Biochemical ecology, 311
Biochemical variables and sediment grain size, 320-321-tables
Biodegradation, 11
Biological analysis bibliography, 20
sampling and analytical methods, 18-20
Biological effects: microcosm experiments, 431, 434-436
Biological responses at microbial test sites, 305, (table)
Biota: metal concentrations, 434-436
Biota, ocean: toxicity of diesel additive, 223
Biphenol contaminants, 313
Biscayne Bay estuary study area, 312-313
Black Rock Harbor, CT: locations of harbor channel dredging, 82, 83(fig)
Black Rock Harbor, CT estuary: dredged material disposal site, 214
Blanks: quality control for analytical procedures, 36-37
Blue mussel, test organism, 214 See also Mus­sels: test organisms
BOF measurements, 452-453(table), 459
BOF model, 455
BOF rates, 451
Boonton, New Jersey reservoirs, 197(table)
Burning sludge for disposal, 3
Burying sludge for disposal, 3

C
Cadmium
aqueous phase toxicity, 17
criteria for method detection limits (MDL), 465
detection in aquatic systems, 103
in sewage, 93
metal-particulate sediment phase distributions, 85, 86(fig), 89(fig)
RPOC interactions, 16
Calibration simulations, 458
Canada: Ocean dumping control act and Fisheries act, 27, 29
Canonical correlation: biochemistry and metal data, 322-324
Carbon turnover, 303
Carbonates: marine sedimentary particulate matter, 81
Carbonyl compounds, 159
Carcinogenic chemicals, 465
Carcinogens, human, 4
Catalytic/sorptive effects of bentonite and barite, 233, 239, 242
Centrifugation, 112
Ceriodaphnia tests, 304, 305(table) 307-308
Chemical analysis, 102, 120, 313-314
Chemical and biological analysis of sediments: analytical methods, 18-20
bibliography, 20-21
Chemical characterization of dredged materials, 81
Chemical concentrations in sediment, 16
Chemical contaminants from dredged materials, 213
Chemical contaminants: Hudson/Raritan estuary sediments, 403, 405, 412
Chemical derivatization: formaldehyde determination, 159-163, 168-171(tables, figs)
Chemical interactions between sediment/contaminant, 14
Chemical speciation and toxicity, 17
Chemicals in municipal sludge, 465-466
Chlorinated dibenzo-p-dioxins, 205(fig), 210(fig)
Chlorinated dibenzofurans, 205(fig), 210(fig)
Chlorinated hydrocarbons, 412, 418
Chlorinated hydrocarbons: soxhlet extraction method, 201
Chlorinated organics, 176
Chlorophylla concentrations, 454(table)
Chromatography, 148, 152, 159, 213, 225-231
Chromium, 93, 103, 110
Chromium: criteria for method detection limits (MDL), 465
Chromium particulate phase distribution in Black Rock Harbor, 88(fig), 90(fig)
Clams. See Soft shell clams
Clark Fork River in southwest Montana: study site for microbial activity, 301
Clean Water Act (Public Law 92-500) compliance programs, 10, 13, 19
information programs, 14
Climatic variability, 11
CMAC. See Committee on Marine Analytical Chemistry, Canada, 27
COD, 384-385, 390(table)
Commencement Bay, WA: sediment bioassays, 395, 396(table)
Committee on Marine Analytical Chemistry (CMAC), Canada, 27
Complexation with organic substances: mechanism of metals association with particulate matter, 81
Compliance monitoring regulations, 10-11, 13, 19
Compositing, 392
Computer kriging program (AKRIP), 60
Computer program: data base management for quality assurance/quality control, 35
Computer programs: for geostatistics application to kriging, 60
Concomitant variables: models, 352-353
Contaminant levels, risk assessment methodologies, 11
Contaminant loading in sewage sludge, 97
Contaminant movement to groundwater, 469, 474
Contaminants: chemical, 405, 412
Contaminants in dredged materials, 81, 94, 213, 221
Contaminants: interaction with metals, 16
Contaminated air, 472
Contaminated drinking water: enteric viruses, risk assessment, 489, 491
Contaminated drilling fluids, 223-226
Contaminated sediments, 13
Contaminated soil, 181-182
Copper, 93, 103
Copper: associated with oxidizable particulate matter in Black Rock Harbor, 86, 87(fig)
Copper contamination: New York Harbor, 404
Copper particulate phase distribution, 89(fig)
Coprecipitation: mechanism of metals association with particulate matter, 81
Coulometry, 176
Covariate analysis, 334
Coxsackie virus: removal from sludge, 283
Criteria, 466-467, 473, 478, 483
Criteria to protect aquatic life, 465
Criteria to protect humans or animals, 468
Crystalline minerals: marine sedimentary particulate matter, 81
Cupric oxide: analysis of drilling fluid additives, 229, 230(table)
Cupric oxide oxidation, 233-237, 245, 249(table), 252-253
Cyanide: criteria to protect aquatic life, 465
Cyclic term variogram, 51(fig), 52, 53
Cycles and sampling, 44
Cycling, geochemical: trace metals, 102
Cytotoxicity with wastewater concentrates, 285

D
Daphnia assays, 307
Daphnia magna, 406
Data analysis
 microbial activity, 303
 phosphorous availability, 74, 75(table, fig)
Data base management for quality assurance/quality control, 35–37
Data interpretation
 automated, 211
 environmental virology, 259
Data management system
 US EPA quality assurance/quality control methods, 35–37
Data reduction, 315–316
Data system for mysid toxicity testing, 363–374
DATMAN data management system, 84
Davyhulme sludge, metal concentrations, 94–100
DCDA. See Dual culture diffusion apparatus
Degradation from toxic contaminants in sediments, 13
Depth-integrated isokinetic sampling, 104
Derivatization, Chemical: formaldehyde determination, 162
Dewatering suspended sediments: procedures, 103–104, 108, 112(table)
Dibenzop-dioxins, 205(fig), 210(fig)
Dibenzofurans, 205(fig), 210(fig)
Dibutyl phthalate, 154(fig, table), 155(fig)
Diesel additive: toxicity to ocean biota, 223
Diesel analysis, 223
Diesel components: extraction techniques, 223–226
Diesel contaminated drilling fluid, 223
Diesel fuel added to water-based drilling fluids, 376
Distillation procedure: isolation of diesel components from drilling fluids, 223
Distribution and marketing of sludge, 480
Dose-response analysis, mysids: appendix b: toxicity data, 354–361; appendix b: data program, 362–374
Dose-response assessment, hazard identification, 4
Dredge, 18
Dredged material
 contaminants, 213, 221
 disposal sites, 215
 marine disposal, 81
 ocean disposal, 418, 431
 waste characterization, 214, 221
Dredged sediment, 403, 419
Dredged spoils, 19 See also SMUDS
Dredging, harbor channel: Black Rock Harbor, Ct., 82, 83(fig)
Drilling fluid
 acute toxicity to mysids: tests, 329, 330–331(tables)
 additives: cupric acid, 229, 230(table)
 contaminated, 223, 224(table), 225–226
 disposal, ocean, 387
 muds: offshore disposal, 326
 nonextractible organic polymers, 229
 toxicity, 334, 344(table), 350, 376
Drilling methods: offshore oil and gas wells, 223
Drilling muds. See SMUDS
Drinking water contamination: risk assessment, 489, 491
Dry ashing: sample preparation method, 144
Dual culture diffusion apparatus (DCDA), 71
Dumping, ocean: sludge disposal, 3, 213
Duxbury Bay, Ma: seawater: suspended particulate phase tests, 378

E
Ecological impacts of toxic substances, 22
Ecology, biochemical, 311
Economic evaluations: sludge disposal/reuse options, 11
Effluent impact, 301
Effluent limitation guidelines, 334–337
Effluents from wastewater plants, 2, 69
Electron transport activity, 303
Eleutriate ammonia concentration, 412, 413(fig)
Eleutriate: comparison with whole sediment bioassay results with Capitella capi-tata. 394–395(table), 408(table)
Eleutriate toxicity testing, 410, 412
Eleutriation data, 123
Emissions sampling, 469
Entamoeba histolytica: sludge, 483
Enteric viruses, 258(table), 273, 274(table)
Enteric viruses in sludge, 483(table), 491, 493
Enterovirus recovery: standards development, 266
Enterovirus removal from sludge, 283
Enteroviruses in waterborne disease outbreaks, 260, 262–263
Environment Canada and Fisheries and Oceans Canada, 27
Environmental contaminants
disposal of sludge in seawater, 94
Environmental degradation from toxic contaminants in sediments, 13
Environmental hazards
disposal of sludge contaminants in seawater, 15, 94
marine disposal of dredged sediments, 81
Environmental impact: ocean disposal of drilling fluids, 387
Environmental impacts of landfilling, 148
Environmental protection, 466
Environmental quality for public health protection: regulations, 10
Environmental samples: organic halides, 176
Environmental sampling, 265–272
Environmental toxicity, 307–308
Environmental virology, 260
Enzyme immunoassay, 275, 277(table)
Enzymes, microbial, 303, 308
EPA method: virus recovery from sludge, 268(table)
Equilibrium distribution in water, 201
Equilibrium Partitioning Approach (EP) for development of sediment criteria, 17
Equilibrium partitioning model, 186(fig), 201
Estuaries, 312
Estuarine pollution
effects, 14, 29, 324
rotoviruses, 283
Estuarine systems: aquatic life toxicity, 405, 412, 414–415
Estuary sediments, 403, 405, 412
Ethylan, 213, 220
Eutrophication, 69
Experimental procedure: harbor dredging, 82–83
Exponential model of semivariogram, 64
Exposure assessment: hazard identification, 4–5
Exposure routes: sediment bioassays, 394–395
Extractable organic halides, 177
Extraction and retort recovery data, 226(table)
Extraction equipment for trace metal associations, 84, 130
Extraction of organics from sediment materials, 189, 201
Extraction procedures, 190–192
Extraction procedures
bioavailable particulate phosphorous, 70–71, 75–78
metals and aquatic particulate matter, 82
soxhlet, 224–225, 226(table)
Extraction, selective: trace metals, 81
Extraction techniques: diesel components, 223–226

F

Fatty acids: phospholipids (PLFA), 312, 313–314
Federal Water Pollution Control Act (FWPCA), 1972, 2
Fertilizer: sludge reuse, 480
Field verification study, 16, 81, 82
Filter samples, 194–196
Filtration methods for concentration of suspended sediment, 104–110
Finger printing, 223
Fish: PCB contamination, 404–405
Fish, pollution effects, 14
Fisheries Act, Canada, 27
Fisheries and Oceans, Canada, 27
Flame atomic absorption spectroscopy, 104, 110, 117, 144
Fluidized bed furnace incineration, 469
Forests, effect of acid precipitation, 20
Formaldehyde determination, 159–175
Freshwater and salt water bioassays, 16, 69
Fugacity measurement, 16

G

Galactosidase, 307
Gas chromatography, 213, 225(table), 226, 229–231
Gas chromatography/mass spectrometry (GC/MS), 152
Gaussian model of semivariogram, 64
GC/MS chromatograms, 216–217(figs)
GC/MS counts: mytilus, 220(table)
Geochemical characteristics, 324
Geochemical cycling: trace metals, 102
Geochemical effects on inorganic contaminants, 477
Geochemical equilibrium models, 469
Geochemical processes on sedimentary metals, 81
Geostatistics: application of kriging, 60
Giardia lamblia: parasitic protozoans in sludge, 483
Grain size, 394
Grain-size chemistry, 114
Grain-size distributions, 117
Grain-size effects on sediment-metal chemistry, 115
Grain-size separations, 114, 121
Grass shrimp, 405, 413(fig)
Grass shrimp: test animal for mud toxicity, 376
Great Lakes: bioavailable particulate phosphorous, 69
Ground-water contamination, 257–264, 469, 476–478, 489
Ground-water: landfilling impact, 148
Ground-water pollution effects, 14

Homogenizing, 392
Hudson river toxicity testing, 410
Hudson/Raritan estuary: New York Harbor area, 403
Human carcinogens: toxicity studies, 4
Human enteric viruses in sewage and water, 258, 274(table), 282, 483(table)
Human exposure routes: sludge pathogens, 484–485
Human health: risk assessment, 480
Hydrocarbon additives to drilling fluids, toxicity testing, 378–389
Hydrocarbon petroleum additives to drilling fluids, 387
Hydrocarbon pesticides, chlorinated, 313, 412, 418
Hydrocarbons, chlorinated: sozhlet extraction method, 201
Hydrous metal oxides: marine sedimentary particulate matter, 81

Impact assessments, 307–308
Impacts of toxic substances, 22
Immunofluorescence: virus detection tests, 282, 286
Incineration: sludge disposal, 469, 480
Industrial sewage treatment plants, New Jersey, 141
Industrial solid waste, 130
Infectious dose: drinking water: risk assessment, 490–491
Information development
Clean Water Act regulations, 14
pollution in estuaries, effects on aquatic life, 14
Inorganic contaminants, 477
Inorganic constituents: analytical techniques, 30(table)
Inorganic halides, 176–177
In-situ measurement method: SOD rate, 442–444
In-stream filtration sampler, 187
Intra and interlaboratory and variability, 328, 346–347
Ion exchange: mechanism of metals association with particulate matter, 81
Iron, 93
Iron oxides: sediment interactions, 16, 86–87
Isomer groups, 206(table), 210(fig)

Jordan River at Salt Lake City, Ut: study site for microbial activity, 301
K

Kriging, 50, 64–65 models, 66–67(figs), 68(table)

Kriging computer programs (AKRIP), 60

universal kriging, 66

Kriging techniques

error estimation, 60

semivariogram, development, 60

L

Laboratory evaluation, 336–344, 346(table), 350

Laboratory measurement: SOD rate, 444–445

Laboratory methods evaluation, 135

Laboratory observations versus field data, 16

Laboratory procedures, 394

Laboratory: USEPA QA/QC procedures, 35

Laboratory variations, inter- and intra-, 346–347(tables)

Lake sediments: monitoring, 59

Lake Washington: cupric oxide oxidation, 245

Lakes and rivers: eutrophication, 69

Land applications of sewage sludges, 259, 273, 288, 466–467, 480

Land applications of sludge-bound mutagens, 290

Landfill environmental impact, 148

Landfill simulator program, 148

Landfilling sludge: contamination, 475–476(figs)

Landfills, 273, 466, 468–469, 472

Leachable organic halides (LOX), 177, 178(fig), 182

Leachate pathways, 476

Leachates, 472

Leachates: formaldehyde determination in environmental samples, 170–175(tables, figs)

Leaching: analytical methods, 139, 153, 159

Leaching: priority pollutant compounds, 158

Leaching procedure (TCLP). See Toxicity Characteristic Leaching Procedure

Leaching tests, 129–130, 133(table)

Leaching tests: laboratory methods evaluation, 135

flow diagrams, 134–135(figs)

ranking, 134(table)

Lead, 93, 103

Lead particulate distribution in Black Rock Harbor, 88(fig), 90(fig)

Lignin, 228, 236, 246, 249–252(tables)

Lignite, 229, 237, 250(table)

Lignosulfonate, 229, 237, 240(figs), 249(table), 251(fig)

Lignosulfonate fresh water mud: toxicity test material, 376

Lipid phosphate analysis, 313–314

Lipids, 312, 313–314

Liquid chromatography, 159

Liquid phase bioassays, 411(fig)

Literature search: formaldehyde determination, 164–166(table)

Long-term variogram, 50, 52, 53(fig)

M

Mammalian test tube studies, 4

Manganese, 93

Manganese oxides

sediment extractions, 81

sediment interactions, 16

MANOVA: multivariate analysis of variance, microcosm data, 424(table), 431

Marine Analytical Chemistry Program, National Research Council (NRC) of Canada, 27

Marine communities: impact of sewage sludge, 98

disposal of sediments, 81

dredged materials: waste characterization procedure, 214, 221

pollution, 391

resources management, 27

sampling sediment, 392–393

dediment bioassays, 395

dediment reference materials, 29

dediment toxicity tests, 391–402

dedimentary particulates, 81

system testing, 405

Marine Protection, Research, and Sanctuaries (Ocean Dumping) Act (Public Law 92–532), 213, 273

Mass spectrometric data: automated and nonautomated procedures, 209, 212(table)

See also GC/MS

Marketing sludge for disposal, 3

Mathematical normalization: grain size effect, 115–117, 127

Maximum likelihood estimation, 334

Maximum permissible contaminant levels risk assessment for reuse/disposal regulation development, 11

MDL. See Method detection limits

Measurement: BOF, 452–453, 459

Measurement methods, 22

Measurement methods, SOD rates, 442(table)

Menidia menidia, 405

Mercenaria mercenaria, 405
Mercury, 103, 465
MESS-1, marine sediment reference material, 29(tables)
Metal concentrations, 324
Metal concentrations in biota: from microcosms, 434(table), 435-436
Metal concentrations in sediments, 86, 94-100, 116(table)
Metal contaminants in sewage sludge, 16, 93
Metal levels in digester sludge, 145(table)
Metal oxides, 81
Metal-particle interactions, 82
Metal-particle matter associations Black Rock Harbor dredged material physical characteristics, 84(table), 85, 87, 88-89(figs)
Metal quantitation, 104
Metal variability, 115
Metals
affinities for different particulate surfaces, 81-82
analysis, 318
and sediment grain size, 318-319(tables)
associated with particulate matter, 81
contamination: laboratory and literature studies correlated with environmental observations, 16
effects on microorganisms, 312
in API separator sludge: analysis, 137(table)
in primary settling tank sludge, 145(table)
microcosms, 418
sediment interactions, 16
toxic, 313
Method detection limits (MDL), 465
Methodologies: sludge disposal/recovery ground-water pathway, 477, 479
landfill, 474-476
risk assessment, 2
sediment bioassays, 397
sludge analysis, New Jersey State, 141
trace metals analysis, 103, 114-117
vapor pathway, 477-479
Methods development, 23
Methods evaluation, 347-348
Methods needed
estimating leachate from whole sludge, 469
ranking chemicals for reuse/disposal, 467
sludge concentrations determination, 468, 470
Miami River sediment collection and microbiota, 313
Microbial activity analysis: study sites, 301, 306-307(figs)
Microbial activity tests, 301, 303
Microbial and mammalian test tube studies, 4
Microbial community structure, 312, 324
Microbial enzymes, 307
Microbial lipids, 312
Microcosm experiments: biological effects, 431, 434-436
Microcosms, 418, 420-422, 424(table), 427-430(table), 431
Microcoulometry, 176
Microparticle classifier, 123
Migration of contamination from landfills, 474, 476
Mineral latices: mechanism of metals association with particulate matter, 81
Mineral oil drilling fluid additive, 375
Minerals, crystalline, 81
Mining effluents: microbial activity assays, 300
Miramichi estuary, sampling site for marine sediment reference materials, 29
Model calibration data, 455
Model calibration: SOD rate, 446-447
Model components: general sampling theory: variography, 44-47
Model: waste co-disposal, 130
Modeling, 451, 467, 469, 478
Modeling, WLA, 452
Models, 438-440
Monitoring, 59
Monitoring of streams, variographic experiment, 44-47, 48-51(figs), 52-54(figs), 55-58
Monitoring programs: bed sediment sampling, 114-115
Morbidity and mortality for enteric pathogens, 491(table)
Mud additives, 229, 237
Muds: offshore disposal, 326
Muds: toxicity testing, 334, 376
Multiple hearth incineration, 469
Multivariate statistical analysis (MANOVA), 431
Municipal effluents: microbial activity assays, 301
Municipal sludge chemicals, 466
Municipal sludge disposal, 467, 473, 480
Municipal sludges, 9, 19, 149
See also SMUDS
Municipal treatment plant effluents, 69
Municipal wastewater sludge, 285, 288, 292
Municipal wastewater treatment, 9
Mussels: test organisms, 214-215, 219(table), 220
Mutagenic response: sewage sludge, 292
Mutagenicity
INDEX 505

Mysid toxicity data: appendix a: tables, 354–361; appendix b: data system for dose-response models, 362–374
Mysids, 326, 334, 348, 375, 405
Mytilus edulus test organism. See Mussels

N
NASQUAN program of U.S. Geological Survey (USGS), 103
National Pollutant Discharge Elimination System (NPDES): permit limitation, 451
Naphthalene, 155(table), 157(fig)
Nereis virens. See sand worms
New Brunswick, sampling site for marine sediment reference material, 29
New Jersey reservoirs, 197
sewage treatment plants, 141
sludge management practices, 141, 144
New Source Performance Standards/Best Available Economically Available (NSPS/BAT) Effluent Limitations Guidelines for the offshore segment of the oil and gas industry, 334
New York/New Jersey harbor, 403
Nickel, 93
Nitric acid digestion: sample preparation method, 144
Nitric acid/hydrogen peroxide digestion: sample preparation method, 144
Nitrocellulose enzyme immunoassay, 275, 277(table)
Non benthic organisms, sensitivity studies, 16–17
Nonlinear estimation, 334
Nonpolar organics contaminants, 14
sediment interactions, 16
trace organic chemicals in aquatic environments, 187
NPDES: National Pollutant Discharge Elimination System: permit limitation, 451

O
Ocean biota: toxicity of diesel additive, 223
Ocean disposal of drilling fluids, 223, 376
Ocean disposal of sludges, 466, 470, 473, 480
Ocean dumping, 3, 213, 387, 418, 431
Ocean Dumping Control Act (ODCA) and Fisheries act, Canada, 27, 29
ODCA. See Ocean Dumping Control Act. Offshore disposal of drilling fluids, 326
Offshore drilling, 229
Offshore drilling: toxicity testing, 334
Offshore oil and gas industry: toxicity testing of drilling fluids, 334–353
Offshore oil and gas wells: drilling methods, 223
Organic characterization study: drilling additives, 230(table)
Organic compounds: high molecular weight, analytical procedures needed, 23
Organic compounds in sewage sludge: partial list, 289(table), 295–297(figs)
Organic contaminants, 14
Organic contaminants, Miami River, Bayou Chico, Bayou Grande, 313
Organic content of sediments, 394
Organic halides: analytic procedures, 176–177, 181, 182(table)
Organic halides in environmental samples, 176
Organic polymers in drilling fluids: nonextractable, 229
Organic substances: marine sedimentary particulate matter, 81
Organics: extraction from sediment materials, 201
Orthophosphate, 69
Oxidation, 235–237, 451
Oxidation products, 246, 247(table), 252(table)
Oxidizable particulate matter, sedimentary, 86–87
Oxygen demand, 438–442, 451
Oxygen flux, 455

P
Paleomonetes pogio. See Grass shrimp
Parasitic protozoans in sludge, 483
Pathogens in sludge: human exposure, 481, 484–485
Particle size distribution, digested sewage sludges, 95, 96(table), 97(fig), 117, 132
Particle size fractionation of sewage sludge by sieving, 100
Particulate matter, sedimentary, 81
Particulate phase bioassays, 410
Particulate phase distribution: chromium, 88–90
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phosphate, bioavailable particulate (BAP)</td>
<td>70, 75, 76(table, fig)</td>
</tr>
<tr>
<td>Phospholipids: fatty acids (PLFA)</td>
<td>312, 312-313</td>
</tr>
<tr>
<td>Phosphorous availability: data analysis</td>
<td>74-75</td>
</tr>
<tr>
<td>BAP extraction</td>
<td>69-71, 74-78</td>
</tr>
<tr>
<td>Phosphorous bioassays</td>
<td>70-71</td>
</tr>
<tr>
<td>Phosphorous in Great Lakes Region: estimation methods</td>
<td>72(table)</td>
</tr>
<tr>
<td>Photosynthesis</td>
<td>451, 458</td>
</tr>
<tr>
<td>Physical methods: leaching procedures</td>
<td>139</td>
</tr>
<tr>
<td>Physical separation: grain size effect</td>
<td>115, 127</td>
</tr>
<tr>
<td>Pipet analysis procedures versus air eleutriation: size distribution comparison</td>
<td>123, 125(table)</td>
</tr>
<tr>
<td>Plankton, pollution effects on health and welfare</td>
<td>14</td>
</tr>
<tr>
<td>Planktonic algal photosynthesis</td>
<td>458</td>
</tr>
<tr>
<td>Plant effluent</td>
<td>2</td>
</tr>
<tr>
<td>Plant life, effects of pollution</td>
<td>14</td>
</tr>
<tr>
<td>Plant uptake of sludge-applied chemicals</td>
<td>468</td>
</tr>
<tr>
<td>Polio virus detection</td>
<td>279</td>
</tr>
<tr>
<td>Polio virus in drinking water: risk assessment</td>
<td>491, 493(table)</td>
</tr>
<tr>
<td>Polio virus removal from sludge</td>
<td>285</td>
</tr>
<tr>
<td>Political constraints: sludge disposal</td>
<td>3</td>
</tr>
<tr>
<td>Pollutant risk hazards: EPA regulations identification for reuse and disposal options</td>
<td>10</td>
</tr>
<tr>
<td>Pollutants: toxic priority list</td>
<td>13</td>
</tr>
<tr>
<td>Pollution estuarine</td>
<td>311, 324</td>
</tr>
<tr>
<td>control: water</td>
<td>2</td>
</tr>
<tr>
<td>effects in estuaries</td>
<td>14</td>
</tr>
<tr>
<td>impacts</td>
<td>311</td>
</tr>
<tr>
<td>rotoviruses: estuaries</td>
<td>283</td>
</tr>
<tr>
<td>water</td>
<td>114-115, 311, 324</td>
</tr>
<tr>
<td>waterways</td>
<td>391, 418</td>
</tr>
<tr>
<td>Polychlorinated biphenol contaminants</td>
<td>313</td>
</tr>
<tr>
<td>Polychlorinated biphenyls</td>
<td>27-30, 31(table), 205(fig), 213</td>
</tr>
<tr>
<td>Polychlorinated compounds: by level of chlorination</td>
<td>204-212</td>
</tr>
<tr>
<td>Polymer formulation: drilling muds</td>
<td>237, 242, 248</td>
</tr>
<tr>
<td>Polymeric concentration of flocculation</td>
<td>229</td>
</tr>
<tr>
<td>Polynuclear aromatic hydrocarbons, (PAH)</td>
<td>213, 313, 418</td>
</tr>
<tr>
<td>Precipitation</td>
<td>20, 97</td>
</tr>
<tr>
<td>Preservation techniques for volatile organic compounds</td>
<td>21</td>
</tr>
<tr>
<td>Preservation techniques: samples</td>
<td>108</td>
</tr>
<tr>
<td>Pressure filtration</td>
<td>130</td>
</tr>
<tr>
<td>Principal component analysis</td>
<td>324</td>
</tr>
<tr>
<td>Priority pollutant data</td>
<td>152-158</td>
</tr>
<tr>
<td>Priority pollutant list</td>
<td>102</td>
</tr>
<tr>
<td>Probit analysis: toxicity tests</td>
<td>334-339, 340-341(tables), 344-345(tables)</td>
</tr>
<tr>
<td>Programming: data base management system for quality control analytical methodology</td>
<td>36-43</td>
</tr>
<tr>
<td>Protease activity, Skeleton Creek</td>
<td>304</td>
</tr>
<tr>
<td>Protection of public health: regulations</td>
<td>10</td>
</tr>
<tr>
<td>Protozoans</td>
<td>483</td>
</tr>
<tr>
<td>Public health</td>
<td>257-264</td>
</tr>
<tr>
<td>Public health significance: pathogens in sludge</td>
<td>484-486</td>
</tr>
<tr>
<td>Pyranograph</td>
<td>454</td>
</tr>
<tr>
<td>Pyrene</td>
<td>155, 156(table), 157(figs)</td>
</tr>
<tr>
<td>Pyrolysis conditions</td>
<td>238, 240-241(figs)</td>
</tr>
<tr>
<td>Pyrolysis gas chromatography (PGC)</td>
<td>229-231, 252</td>
</tr>
<tr>
<td>Pyrolysis products of individual polymers by PGC/MS</td>
<td>230(table), 233-235, 239, 242-243</td>
</tr>
<tr>
<td>Public health: regulations for protection</td>
<td>10</td>
</tr>
</tbody>
</table>
Quality assurance/quality control
counter program, 35
verfication, 23
Quality control procedures: sampling and analyti-cal methodology, 21, 35-39
Quality control: sediment bioassay testing, 392-393
Quality criteria development, 17(fig)

INDEX 507

R

Radiation, 454
Random sampling, 44
RCRA. See Resource Conservation and Recovery Act
RCRA regulations, 21-22
Reactive Particulate Organic Carbon (RPOC): sediment interactions, 16
Reconnaissance studies: trace metal investigations, 117, 122
Recovery data, leaching compounds: priority pollutants, 158(fig)
Recovery experiments: lignin oxidation products, 236
Recovery of viruses from sludge, 259
Recreation, pollution effects, 14
Reference materials development analytic methodologies to aid in determination of trace elements, 27-28
development of analytic methodologies for analyses of seawater, marine sediments, and tissues, 28
development of Canadian expertise in marine analytical chemistry, 28
intercalibration exercises involving analyses of seawater, marine sediments, and tissues, 28
Reference materials released marine sediments for determination of polychlorinated biphenyls (CS-1, HS-1, and HS-2); trace elements and other inorganic constituents (BCSS-1 and MESS-1), 28, 29(tables)
trace elements, open ocean, deep seawater, (NASS-1); coastal seawater (CASS-1); river water (SLRS-1); and lipid-extracted and dried tissue(TORT-1); and set of 51 specially synthesized and purified polychlorinated biphenyl congeners (CLB-1), 28
Reference materials under development West Coast sediment for trace elements; PCB congener; sediments for polycyclic aromatic hydrocarbons; fish liver oil for polychlorinated biphenyls; lipid-free powdered fish liver tissue for trace elements; powdered fish muscle tissue for trace elements, 28
Reference values, EPA vs interlaboratory study, metals, 146(table)
Refinery effluents: microbial activity assays, 301
Regression equations: SOD estimation methods, 446
Regulations public health protection, 10
sludge management, 9-13
Regulatory criteria, 472
Regulatory options for sediment criteria, 16, 18
Regulatory program: stream impact assessments, 302-304
Reporting schedules, SQAR, 142(table)
Reproducibility of analytical procedure for quality control, 36
Reproducibility of test results, 267, 302, 398
Reservoirs, 184, 197
Residue recovery data, 225, 226(table)
Residues, 2
Resins, XAD, 187-188
Resource Conservation and Recovery Act (RCRA), 19, 21-22, 129, 149
Resource management, 27
Resource recovery, 473
Respiration rate bioassays, 394
Retort distillation, 225, 226
Rheproxyminus abronius: benchmark sediment bioassay, 397-398
Risk assessment, 2-5, 9, 22, 466-474
Risk assessment contaminants, 474(table)
disposal, 480
enteric viruses in contaminated drinking water, 489
methodologies, 3, 11
pathogens in sludge, 482(table), 484
poliovirus, 491, 493(table)
political constraints, 2
Risk characterization, hazard assessment, 4, 13
Risk management, 3, 4-13
Risk: viral infection, 257-264
River/reservoir/treatment plant systems, 190, 191(fig)
River water, 102
Rivers, 69, 184
Rockaway River/Boonton Reservoir Watershed, 190, 191(fig)
Rotovirus pollution of estuarine waters, 283
Rotoviruses in sewage, 282
Rotoviruses: removal in sludge treatment plants, 285(table)
Round robin studies: virus recovery from sludge, 266–268, 269(table)
Round robin studies: virus recovery: summary and discussion, 269–270(tables)
RPOC interactions: Reactive Particulate Organic Carbon, 16
Ruggedness evaluation: TCLP, 138(table)
RUMM: Routinely used measurement methods, 22

Salmonella in sludge, 483
Saltwater bioassays, 16, 69
Saltwater test organisms. See Mysids
Sample analysis, New Jersey, 143–144(tables)
Sample collection and processing, 105
Sample collection: experimental procedure for harbor dredging, 82–83
Sample collection: sediment for microbial tests, 302
Sample preparation and analysis: experimental procedure for harbor dredging, 83
Sample preparation methods, 24, 29, 144
Sample preservation, 108, 112
Sample sites: grain size effect 118(fig, table)
Samples
 Boonton, New Jersey reservoirs, 197(table)
 chemical composition, 120
 chromatograms of filter samples, 194–196(figs)
 grain size distribution, 120
 ranges of chemical and physical parameters, 19–120(tables)
Swatara Creek, 126(table)
Sampling
 and analytical methods, 18–24, 44, 72
 anthropogenic pollution, 114
 bed sediments, 114–115
 marine sediments, 392–393
 methods, 467
 methods and procedures, 103–105, 112, 193
 models, variographic experiments, 44–58
 of sediments: computer kriging program, 60
 priority pollutant content, 152
 procedures: benthic communities, 313
 rotovirus removal, 265–272, 284(table)
 sediment criteria development, 15
 sediment for phosphorous bioassay, 72
 sites for marine sediment reference materials, 29
 sites in Great Lakes Region, 73(fig)
 soxhlet extraction, 192

theory: behavior of spacially distributed variables, 59
theory: variography, 44–58
to locate ore bodies, 114
variability: kriging, 59
water quality, 114–115
Sand Island Wastewater Treatment Plant (SIWTP), Honolulu, HI, 273, 274(fig)
Sand worms: test animals for toxicity testing, 377, 405
Sandy Hook Bay toxicity testing, 410
Sanitary waste codisposal model, 130
Science Advisory Board (SAB), EPA, 14
Scioto river: model input data, 452(table), 461–462
Seafood contamination, 465
Seawater analysis, 28
Seawater sludge disposal, 94
Sediment
 analysis, 103, 114
 bacteria, 303
 bioassays, 392, 394, 396–397(tables)
 bioassays: uses, 398–399
 characterization, 213, 394
 chemical concentrations, 16
 chemistry, 315
 contaminant interactions: cadmium concentrations, 85
 contaminant levels: observed effects compared to laboratory and field data, 13, 16–17
 criteria development, 13–15, 17(fig)
 criteria for regulatory purposes, 16
disposal, 414
extraction: method development and quality assurance, 189–190, 201
grain size, 316, 317–319(tables)
iron oxides, 86–87
materials: extraction of trace organics, 189(table), 201
metal concentrations, 317, 324
monitoring, 59
organic carbon, 14
oxygen demand (SOD), 438–442
phase distribution, 85–89
reference materials, 29
samples, 82–83, 122, 126(table), 421
toxic contaminants, 13
Sedimentary
 community structure, 311
 distribution of barium, 229
 grain size distribution, 123
particulate matter, 81
Sediments, 27, 59, 81
Sediments
chemical and biological analysis, 18–20
in waterways, 403
marine disposal hazards, 81
oxygen demand (SOD), 450
phosphorous extraction techniques, 70–71
sampling, 18
Sediments, Municipal sludges, Drilling
muds, and dredged Spoils See
SMUDS
Selective extraction, 81
Selenium, 103
Semivariogram, 46
development using kriging techniques com­puter program, 60, 61–63,(figs)
models, 63–64
relative semivariogram, 47
Semivolatile organic compounds: precision
data, 138(table)
Sensitivity analyses: risk assessment method­ology, 11
Sensitivity studies, benthic and nonbenthic
organisms, 16–17
Separation of sediment: particle size ranges,
117, 122–123
Separation procedures: sieving of sewage
sludge, 94–95
Settling centrifugation, 104, 108, 112
Settling tank sludge: metal levels, 145(table)
Settling times: particles of different densities,
121(table), 122
Sewage, 288
Sewage-amended soils, 265–272
Sewage disposal, 415
Sewage sludge
contaminant loading, 97
digested sewage sludge, physical separation
experimental procedure: sieving, 94, 95(fig)
disposal: risk assessment, 472
distribution of heavy metals, 93
impact on marine communities, 98
organic compounds: partial list, 289(table),
295–297(figs)
particle size fractionation by sieving, 100
samples: characteristics, 288(table)
Sewage sludges, 265–273, 282
Sewage treatment: metal versus particle size
distributions, 97
Sewage treatment plant residues, 2, 69
Sewage treatment plants, New Jersey: param­eters required for analysis, 141,
142(table)
Shellfish, pollution effects, 14
Shorelines, pollution effects, 14
Short-term toxicity tests, 300
Short-term variogram, 50, 51(fig), 52
Sieving, particle size fractionation of sewage
sludge, 93–100
Silver, 103, 465
Site-specific factors, 11
Skeleton Creek near Enid, OK: study site for
microbial activity test, 301
Skunk River suspended sediment site, 105–
106
Sky radiation, 454
Sludge, 260–264, 276, 465, 472
Sludge
anaerobically digested, 261–262
analysis, 18
analysis methods, 137(table)
concentrations: criteria, 468
disposal, 2–3, 9–11, 150(table)
terovirus removal, 283
fertilizer, 480
freshwater dumping, 288
landfills, 148–149, 273, 288, 474, 476, 480
management, 2, 9, 141, 144
ocean dumping, 288
policy: EPA, 10
sampling, 144
seawater mixing, 93
virus removal, 283
Sludge Quality Assurance Regulations
(SQAR) reporting schedules, 142(table)
Sludge samples, New Jersey, 144
Sludge-seawater mixing, 93
Sludge, sewage: contaminant loading, 97
Sludge Task Force, USEPA, 2, 9
Sludge testing for heavy metals and toxic or­ganic compounds, New Jersey, annual
costs, 141, 143(tables)
Sludge treatment, 257
Sludge treatment plants, New Jersey, 141–147
Sludge virus removal, 283
Sludges, 18, 148–149
Smectic clays, 233
SMUDS (Sediments, Municipal sludges,
Drilling muds, and dredged Spoils) methodology, 18–24, 375–390
Snapper Creek: sediment collections and mi­crobiota, 313
SOD estimation methods, 446
SOD literature values, 445–446
SOD models, 440, 447
SOD rates, measurement, 442–444
SOD: sediment oxygen demand, 438–442
Sodium chloride, 4
Soft-shell clams: test animals for mud toxicity, 377
Soil conditions: effect on toxicity of pollutants, 11, 20
Soil, contaminated: extractable organic halides, 181-182(tables)
Soil: effect of land application on sludge-bound mutagens, 290
Soil sample handling: extractable organic halides, 179
Soil variability, 11
Soils, 176
Solar irradiance, 460-461(tables)
Solid wastes, industrial, 130
Sonication, 224-225
Sonication method: enterovirus recovery from sludge, 268(table)
Sonicator method: PCB screening, 21
Soxhlet extraction chromatograms, 199(fig)
Soxhlet extraction method, 190, 192, 198(table)
Soxhlet extraction method: chlorinated hydrocarbons, 201
Spacially distributed variables, theory of behavior: kriging, 59
Speciation: chemical, and toxicity, 17
Spectroscopy, atomic absorption, 104,110, 117, 144
Spherical model of semivariogram, 63
Spike recovery tests to measure accuracy of analytical procedure for quality control, 36
Spiked soil samples: extractable organic halides, 179, 180(table)
Spiking: priority pollutant compounds, 158
Spoils, dredged sediment, 19
See also SMUDS
Stack emission rates, 469
Standard laboratory procedures, 394
Standard methods: bioassay testing, 392-394, 398-399
Standard methods: trace organic analysis, 184-187, 188(table)
Standard practices for sampling and analytical procedures, 22-23
Standardized methods, 468
Standards development: virus recovery, 265-267
Standards for analytical methodologies: quality control: data base management system, 36-39
State sludge programs, 10
Statistical analysis: data reduction, 315, 316
Statistical analysis: drilling fluid tests, 327
Statistical analyses: microcosms, 422, 431
Statistical methods for toxicity testing, 4, 336-339, 350, 375-390
Statistical procedures for sediment criteria development, 15
Stokes Law equation: grain size separation, 121-122
Storage tanks, underground, 19
STORET data for environmental contaminants, 15
Stratified random sampling, 44
Stream monitoring, 44
Stream oxygen balance, 450
Stream surveys at microbial activity test sites, 302-303, 304(table)
Stream toxicity, 307
Superfund, 19
Superfund program: organic methodology, 21
Surface water: land filling impact, 148
Suspended particulate phase bioassays, 410(fig)
Suspended sediment, 103-105, 187-188
Suspended sediment concentration techniques: chemical concentrations, for four sample sizes, 107(table)
Suspended sediment concentrations, 110, 111(table), 112
Susquehanna River suspended sediment site, 105-106, 110
Suwanee Creek suspended sediment site, 105-106, 110
Swatara Creek, Pa.: sediment samples, 126(table)
Syringe diffusion method K_{oc}
Systematic sampling, 44

Tanks, underground storage, 19
TCLP. See Toxicity Characteristic Leaching Procedure
Teratogenicity: toxicity studies, 4
Test animals, 405-406
Test methods
development: acute toxicity tests, 327-328
drilling fluid toxicity, 336-339, 350, 375-390
evaluation, 347-348
leaching procedures, 139
probit analysis, 334-337
Test organisms. See Mussels
Test parameters, 302(table)
Test procedures for chemical contaminants and toxicity, 405
Test results: reproducibility, 267
Testing, short-term, 22, 24
Testing: toxicity, 465
Tests, acute toxicity, 329(table)
Tests, microbial: toxicant impact assessments, 307
Thallium, 103
Thermal treatment: human enteric viruses, 274
TMDL. See Total maximum daily loads
Total maximum daily loads, 450
Total organic halides, 176-177
Toxic chemicals in sediments, 397
contaminants in sediments, 13
ecological impacts, 2, 22-23
marine sediment reference materials, 29
metals, 313
organic compounds, 184-203
pollutants, 466
trace elements, 29
trace metals, 81
Toxicant impact assessments, 307
Toxicity

cadmium, 17
contaminated sediments, 398, 403-404, 418, 432
data: mysids, 336, 340-341(tables), 354-361
diesel additive to ocean biota, 223
drilling fluids, 336-339, 350, 375-390
drilling fluids to mysids: tests, 326, 329, 330-331(tables)
drilling muds, 375-390
mud additives, 229
responses: sediment bioassays, 395
streams, 307
studies for teratogenicity and mutagenicity, 4
testing, 15, 21, 24, 403, 410, 418-437, 465
mysids, 336, 340-341(tables), 354-361
reproducibility of results, 328
test methods, 391-417
Toxicity Characteristic Leaching Procedure (TCLP), 129, 133(table), 136
Trace elements, development of marine sediment reference materials, 28-30
Trace metal particulate matter associations, 82
Trace metals, 102-103, 112
Trace metals analysis, 114-117
Trace metals: geochemical cycling, 102
Trace metals in marine environment, 81-83
Trace metals in sewage sludge, 146(table)
Trace organic compounds: standard methods for analysis, 184-187, 188(table)
Trace organics: extraction from sediment materials, 189, 201
Tracer oxidation products, 237
Tracer pyrolysis products, 244, 246(fig)
Transport pathways, 469
Treatment plant effluents, 69
Treatment plant system: river/reservoir, 190, 191(fig)
Treatment requirements for municipal wastewater, 9
Trends and sampling, 44

U

Underground storage tanks, 19
Uniformity of results for virus recovery procedure, 267
Universal kriging, computer model, 60-68
U.S. Geological Survey (USGS), NASQAN program, 103
USGS. See U.S. Geological Survey

V

Validation, 467-469
Validation priorities for quality assurance, 23
Vapor loss, 472, 477-478
Variability

behavior theory of kriging, 59
climate and soils, 11
intra and interlaboratory, 328, 346-347, 350
metal, 115
priority pollutant compounds, 158
Variograms, 50-55
Variance components analysis, 349(table)
Variography: sampling theory, 44-58
Verification, 16, 81-82
Viral infection: risk, 257-264
Virological assessment

raw sewage sludge, 276(table)
thermally treated sludge cake, 276(table)
Virology, environmental, 260
Virus

content, 282
detection, 277, 282, 286
detection: polio, 279
in-sludge: round robin test, 267
in-sludge

standard methods development, 271-272(tables)
levels in sludge, 263(table), 265-272
recovery and assay methods: sludge, 259, 261, 265, 275
recovery: standard methods

round robin studies, 265-272
standards development: recovery from sludges, 266-267, 268(tables)
Viruses: human enteric, resistance to standard sludge treatment processes, 258(table), 273
Viruses: in drinking water, 489, 491
Volatile organic compounds, 21
Volatilization, 11

Waste
alkalinity test, 132
characterization studies, 214, 221
disposal, sludge: burning, burying, spreading, marketing, dumping, 3
hazardous, 129-130
management, 149
sanitary: codisposal model, 130
Waste generation criterion: standardization, 19
Wasteload allocations (WLAs), 452
Wastewater
land disposal, 259
planning: effluents, 2, 69, 148
procedures: EPA 600 series methods, 21
sludge, 285, 288, 465
sludge treatment processes, 259-260, 283, 285
treatment, 415
treatment discharges, 35
treatment planning, 2, 9, 69
Water-based drilling fluids, 229, 376
Water
equilibrium distribution, 201
pollution, 311, 324

X-Z
XAD resins, 187, 188(fig)
Zimbro wet air oxidation system, 274
Zinc, 16-17, 103, 404
Zooplankton, 418, 422, 424-425(tables), 426(fig)

pollution assessment: bioassay procedures, 23
pollution control, 2, 14, 391, 403, 415
Water quality
conditions for sediment bioassay, 394
criteria, 13
management, 404, 413-414
modeling, 438-440
trends, 114-115, 127
wasteload allocation studies, 450-462
Water treatment, 282
Waterborne enteric virus infections, 260, 262-263
Waterway sediments: toxicity, 404, 407-408(table)
Wet air oxidation system, 274
Whitewood Creek at Deadwood, SD: study site for microbial activity, 301
Wildlife, effects of pollution, 14
WLA: Wasteload allocation, 452
WLA modeling, 452
Wood dust leachate: formaldehyde determination, 172-173(tables, figs)
Worst case scenarios: human exposure to sludge pathogens, 486-488