Subject Index

A

Aggregate (see also Alkali-aggregate reaction)
effect of alkali in, 16-30
Pyrex, 75
reactive, 31, 32, 33, 42, 60-61, 83
siliceous rock, 7, 13-14
Alkali reactivity in concrete, 6-7
Alkalis
beneficial effects on concrete, 12, 14
cement strength development and, 7 (illus)
in concrete testing, research, and engineering practice, 5-15
distribution in cement phases, 38
effects on expansion, 31-45
by selective extractions, 38-39
effect in aggregate on expansion, 16-30
extraction procedure, 38
history of in concrete, 5-6
hydroxides, 6, 9, 11
leached, 20-22 (tables), 25-27
total, 46-57
water-soluble correlating to total alkalis in cement, 46-57
extraction procedure, 38
Alkali-aggregate reaction (see also Aggregate; Alkali reactivity in concrete; Alkali-silica reactions)
alkali-carbonate reaction, 59
avoiding problems of, 63-64
case histories of, 60
factors affecting expansion, 60
fly ash in reducing, 58-68 (see also Fly ash)
Alkali-hydroxide silica reactions, 8, 11
Alkali-silica (see also Alkalies; Silica)
gel, 8, 48 (illus), 60
popouts, 46-57
formation, 51
reactions, 6, 11, 13, 59
deleterious, 8, 13-14
effect on engineering properties of concrete, 69-86
effect on expansion, 16-30, 31-45
gelogic background, 47-48
rocks and minerals exhibiting, 61 (table)
Alkali-silicate reaction, 59
Alkali-sulfates, 8, 34
Andesite, 25
Army Corps of Engineers cement testing, 67
ASTM Committee C-1 on Cement, 2
ASTM Standards
C 109: 36
C 114: 2, 38, 44, 51, 55
Section 17.1: 35
Section 17.2: 34
C 150: 33, 62
C 151: 66
C 227: 1, 2, 3, 17, 19, 27-28, 35-37, 51, 56, 60, 66, 81
ASTM Standards (cont.)
C 289: 13, 33, 37, 39, 66
C 295: 66
C 311: 9, 55, 65
C 441: 51, 67, 75
C 618: 2, 64
ASTM Subcommittee C09.02.02: 36

B
Bureau of Reclamation cement testing, 67

C
Calcium hydroxide, 9, 11
formation, 8
solution, 6, 18, 26-27, 28
Calcium langbeinite, 34
Calcium oxide, 64
Cement (see also Cement paste; Concrete)
alkali content, 61-63
alkali distribution effects, 31-45
ASTM Type II, 19
burning, 6
chemical analyses, 19 (table)
clinker, 6, 8
expansion, 16-30, 31-45
high-alkali, 23 (illus), 28, 29
hydration, 6, 34
Long Time Study cement No. 24
(LTS 24), 19
low-alkali, 24 (illus), 28
total alkali content, 46-57
Cement paste
density, 11
hardening, 14
Chemical test, quick, 13, 33, 37
adequacy of, 66
Compressive strength, 76 (illus), 80, 85
Concrete (see also Cement; Concrete testing)
alkali-silica reaction effects, 69-86
cracking, 80, 83
engineering properties, 69-86
expansion
alkali effects on, 16-30
due to cement alkali distribution, 31-45
at elevated temperature, 75
properties at limits, 83 (table)
at room temperature, 72-75
hardening, 6-7, 11
history of alkalis in, 5-6
hydration of silica in, 7-11
recognition of alkali reactivity in, 6-7
strength development, 6, 7 (illus)
Concrete testing
alkalis in, 5-15
impact of in industry, 12-13
Cretaceous shale, 47
Curing methods, moist, 56

D
Dynamic modulus test, 72, 79 (illus), 81, 84 (illus)

E
Engineering practice, alkalis in, 5-15

F
Feldspar, 25, 26, 29
Fluid pressure test, 85
Fly ash
Class C, 64, 65
Class F, 64
effect of sodium and potassium in, 64-65, 67
effect on alkali-silica reactions, 8
lignite coal, 53, 55, 56
to reduce alkali-aggregate reaction, 58–68
soluble alkalies in, 53

H
Hydroxyl concentrations, 8

K
Keewatin Glacier, 47, 49 (illus), 55

L
Leach period, effects, 23–25 (illus)
Leaching tests, 18
Lime, effect in concrete, 64
Lime-pozzolana mixes, 6
Lime-silica hydrates, 6
Limestone, non-reactive, 33

M
Modulus of rupture test, 77 (illus), 81, 85
Montmorillonitic clay, 47
Mortar bar expansions, 39–42, 43 (illus)
tests, 1, 17, 18–19, 27–28, 51, 72
adequacy of, 66
Danish/Icelandic, 3, 12
of normal vs. low-alkali cement, 53 (table)
with Pyrex aggregates, 75
Mortar strength test, 36

N
Novaculite, 33, 37
expansion, 39, 41 (illus), 42, 43 (illus), 44

O
Opal, Beltane, 33, 35
expansion, 39, 40 (illus), 42, 43 (illus), 44, 72, 80, 81
reactive effects of, 70

P
Pessimum, 61, 67
Portland cement
alkali content, 62, 63, 65
hydration, 8
pozzolanic reactivity in, 6
residual alkalies in, 9
Potassium sulfate (K₂SO₄), 6
Pozzolana
activity test, 9
effect on alkali-silica reactions, 8–9
hydration of, 9–11
reactivity in portland cement, 6
to reduce expansion, 59, 63, 64, 66–67
Pulse velocity, 81, 82 (illus), 85
Pyrex aggregates, 75

S
Shale, alkali-reactive, 50 (illus)
Silica (see also Alkali-silica reaction)
in aggregate, 31
chemical analysis, 71 (tables)
concentration, 33, 37
fused, 70–71, 72, 75, 80, 81, 83, 84 (illus), 85
glassy, 8
hydration in concrete, 7–11
opaline, 48, 60
pure, 16
reactive, 59 (see also Alkali-silica)
sand, 70–71
Silicates, 29
Siloxane, 8
Stag, 8
Sodium oxide, 16
Spectroscopy, atomic absorption, 33, 34
Sulfates, 6 (see also Alkali-sulfates)

Temperature effects on expansion, 72-75
Tensile strength, 78 (illus), 80-81
Tensile test, indirect, 78 (illus), 81

Vale de la Mare Dam, 61
Wisconsin glaciation, 47
X-ray diffraction (XRD), qualitative, 33, 34, 37 (table), 38