Subject Index

A

Adhesive binding, use in structural steel joints, 72–93
Adhesives
    creep strength, 76, 93
    Versilok 204, 76
Aircraft
    crack failure in, 9–12, 37–38, 63–64, 95, 118, 222
    crack repair of, 63–64, 190–219
design of, 5, 118
    durability of, 118
    structural failure in, 95
Aluminum alloys
    types of,
        2024-T3, 227
        2024-T4, 20
        2024-T31, 173
        2117-T4, 20
        7050-T73, 173
        7050-T7451, 53, 55
            table, 59
        7051-T561, table, 195
        7075-T6, 173, 192
        7075-T73, 226
        7091-T7E69, 173
        7475-T7351, 95, 131–141
            table, 96
        IN9021, 172
        nickel-bronce, 43
            table, 45
        Ti-6Al-4V, 227
            table, 226
uses of
    bushings, 45–52
    extrusions, 173
    fastener hole specimens, 54, 120
    fasteners, 10, 261
    lugs, 42
    pins, 153
    plates, 95, 131, 173, 192, 194–195, 227, 253
    rivets, 19–24, 173
ASTM Standards
    A 325-82: 76
    E 399-83: 60
    E 606-80: 58
    E 647-83: 58, 133

B

Bearing damage, in bolted, composite-metal joints, 277–286
    diagram, 281
Bearings, new design concept, 27–31
Bearing stress, in bolted laminates, 269–273
Beryllium-copper alloy, used in bushings, 43–52
Boeing and Douglas formulas, load transfer calculations, 236
Bolted joints
    adhesive bonded/bolted steel joints, 72–93
    multiple-row metallic joints, 226–227
Bolted joints (cont.)
  straight-sleeve bolt fasteners, 22–24
  using fiber sheet molding compound, 274–288
  using laminates, 251–273
Bolt pattern, 287
Bolts
  for structural steel joints, ASTM Standard A 325-82: 76
  Hi-Lok, 22–24, 194, 227
  NAS, 227
  shear head, 12–14, 261
  straight sleeve, 22–24
Bowie function, 159
  stress intensity factor calculation, 159
Bushing interference, definition of, 40
Bushings
  new design concept, 24–27
  ForceMate installation method, 39–52
  applications of, 49
  technique, illustration, 41
  shrink-fit installation method, 39–52
Butt joints, 172–189
C
Cadmium plating, in bushings, 24, 42
Clamping torque, 277, 279–280, 285
Cold expansion
  bushing installation, 40, 42
  effect on fatigue life, 60
  fastener holes in aluminum, 60–61
Cold working
  fastener holes, 37–38, 40–42
    in aluminum, 53–71, 197–204
    stop-drill holes, 190–219
Composite-metal joints, 19, 152–153, 226–227, 251–288
Compressive loading (see Loading, compressive)
Compressive stress (see Stress, compressive)
Computer programs (see also Finite element analysis)
  Calac-NASTRAN Rigid Format No. 4, for differential stiffness analysis, 182
  for fatigue life analysis of joint specimens, 184–185
Constant amplitude loading (see Loading, constant amplitude)
Corrosion (see Fretting corrosion; Galvanic corrosion; Salt-spray corrosion; Stress, corrosion)
Cover plates, adhesive bonded, 75, 88–93
Crack exceedance probability, 119, 136, 139
Crack growth (see Crack propagation)
Crack initiation
  adhesive bonded/bolted steel joints, 78–80, 85, 88
    photograph, 79
  bolted composite-metal joints, 279, 280–281, 286
  cold-worked fastener holes, 37–38
    in aluminum, 62, 65
      photograph, 66
      table, 68
  fastener holes in aluminum, 97–115, 118–147
    graph, 106
  riveted aluminum joints, 178
  stop-drilled fatigue cracks, 197, 205–219
Crack propagation
  adhesive bonded/bolted steel joints, 78–80, 85, 88
Crack propagation (cont.)
  bolted composite-metal joints, 281
  photograph, 282
  cold-worked fastener holes, 37–38
  in aluminum, 53–71
  fastener holes in aluminum, 97–115, 119–147
  interference fasteners, 8–10
  pin-loaded hole in rounded-end
  attachment lug, 155–166
  precracked aluminum, 58–61
  riveted aluminum joints, 178–179
  graph, 180
  table, 178
  stop-drilled fatigue crack, 197, 205–219
Crack size distribution, 122–126, 134, 138–141
Crack types
  in aircraft, graph, 11
  part-through, 163
  single corner, 150, 159, 158–162
  graph, 163
  through-the-thickness, 155–158
  diagram, 150
  table, 157
  transitioning, 150, 161–166, 164
  graph, 165

D
Damage, aircraft, 118–147
Damage tolerance, requirements of
  U.S. Air Force, 151
Deburring process, 67
Deformation measurement, fasten-
  er types in multiple-row
  joints, 223–249
Dogbone joints, 97–117
Double lap tests, 253, 256
  graph, 261
Double-shear joints
  adhesive bonded/bolted steel, 73
  fastener flexibility
  graph, 239
  table, 228
Durability analysis methodology, 118–147
  
  E
Eccentricity effect, 253
Eddy current hole scanner, 102
Elastic-plastic deformation, of me-
  tallic/nonmetallic joints, 227–228
Elastic-plastic finite element analy-
  sis, stress analysis of cold
  expanded holes, 197–204
Environmental effects, on tensile
  response of laminates, 264
Epoxy models, 152–153, 226–227, 251–273
Equivalent initial flaw size, 118, 122–147

F
Failure modes, of fastener holes,
  drawings of, 258
Falstaff sequence, 227
Fasteners, advanced technology (see also
  Bolts; Bolted joints;
  Lugs; Rivets; Riveted
  joints), 5–39
Fastener torque, 262
Fatigue analysis (see Fatigue test-
  ing)
Fatigue, joints, state of the art, 1
Fatigue life
  adhesive bonded/bolted steel
  joints, 72–94
  bearings, 27–31
  bolted fiber sheet molding com-
  posite-metal joints, 274–288
  bolted structural steel joints, 72–93
  bushing ForceMate installation,
  39–52
  illustration, 41
Fatigue life (cont.)
bushings, 24-27
bushing shrink-fit installation, 39-52
clearance hole versus interference fit hole, illustration, 12
cold worked fastener holes, 37-38, 53-71
crown flush rivet system, 14
dogbone/double lap shear joints in aluminum, 107-115
prediction methodology, 95-115
predictions for shear-loaded fasteners in aircraft, 222, 244-245
for stop-drill fatigue crack repair, 209-212
riveted aluminum joints, 183-185
table, 175
sleeve bolt fasteners, 20, 22-24
table, 23
stop-drilled crack tip, 190-219
stress-coining, 31-37
illustration, 34
tetrafluoroethylene-coated fasteners, 12
Fatigue specimens, standardization of, 7-8
illustration, 8
Fatigue strength (see Fatigue life)
Fatigue tests
bolted composite-metal joints, 251-288
bolts
Hi-Lok, 22-24
table, 23
straight-sleeve, 22-24
table, 23
bushings, ForceMate installation, 43-52
constant amplitude loading,
ASTM Standards
E 606-80: 58
E 647-83: 58
bushings, 45, 50, 52
cold-worked holes in aluminum, 58
dogbone/double lap joints in aluminum, 97-110
fighter and bomber load spectra, fastener holes in aluminum, 131-141
riveted aluminum joints, 172-189
table, 175
specimen configuration, 7-8
spectrum loading of bushings, 43, 50, 52
static tests on bolted composite-metal joints, 253-273
stress-coining effects on fastener holes, 37-38
stress corrosion test blocks, 8-10
Faying surface sealants
polysulfide, 173
PR 1436 sealing compound, 227
tetrafluoroethylene (Teflon), 10-12
Federal Aviation Administration (FAA), 14
Fiber sheet molding compound, 274-288
Finite element analysis, 179-183, 197-204
Flexibility of fasteners, 221-249
and load transfer, graph, 225
formula for, 235-236
ForceMate installation, 39-52
illustration, 41
Fractographic analysis, 62, 131-141
Fracture mechanics, 118-141, 211-219
Fracture problems of joints, 1
three-dimensional molding of, 166-169
Fracture surface markings, 175-179
photographs of, 176
Fracture toughness, of metallic materials, ASTM Standard E 399-83: 60
Fretting corrosion
   in aircraft joints, 10–12
      illustration, 11
   in bearings, 27
   in bushings, 24
Fretting fatigue
   in bolted composite-metal joints, 280
      photographs, 282
   on faying surface, 173, 286–287
      illustration, 287
Frictional force, effect on notch root strains, 244
Frozen-stress photoelasticity technique, 150–169

G
Galvanic corrosion, in aircraft joints, 19–20
Graphite/epoxy joints, 19, 226–227, 251–273

H
Highway bridges, 72
Hole elongation, 269–273
Holes
   bushed, 39–52
   cold worked, 37–38, 40–42, 53–71, 190–219
Hoop stress, in cold worked holes, 199–203
Hysteresis curves
   bolted laminates, 269
   flight by flight loading of joints, 230
   stop-drilled slotted holes, 211

I
Initial fatigue quality (IFQ), 119, 120, 131
Interference fit fastener systems, 5, 39–52, 53, 57, 65–67, 192

J
Joining methods, 5–38, 72–94
Joints (see Bolted joints; Butt joints; Composite-metal joints; Dogbone joints; Double-shear joints; Graphite-epoxy joints; Lap joints; Mechanical joints; Metallic joints; Multiple-row joints; Riveted joints; Shear joints; Single-lap joints; Single-shear joints; Spliced joints)

L
Laminates, 251–273
   table, 252
Lap joints, 175–189, 274–288
Life improvement factor, 61
Linear elastic fracture mechanics (LEFM), calculations for open/pin-loaded holes, 153–155
Loading
   compressive, bolted laminates, 251–273
   constant amplitude
      adhesive bonded/bolted steel joints, 77
ASTM Standards
   E 606-80: 58, 133
   E 647-83: 133
bolted laminates, 251–273
cold worked holes in aluminum, 54, 58
double joints in aluminum, 95–117
flight-by-flight, 45–51
ForceMate bushing installation, 45–51
stop-drilled fatigue cracks, 211–215
Falstaff, 227
Loading (cont.)
spectrum
riveted lap and flush joints, 173–189
stop-drilled fatigue cracks, 212, 215
tension
bolted laminates, 251–273
open hole in plate, diagram, 152
Load spectra, fighter and bomber, 118–147
Load transfer
and fastener flexibility, 221–249
composite-to-aluminum joints, 251–273
dogbone joints in aluminum, 95–117, 108
double-shear joints, graph, 243
multiple-row joints, 222–225, 236–245
Lugs
for ForceMate bushings, 39–52
rounded-end straight attachment, 150–171

M
Magnaflux HT-100 eddy current hole scanner, 102
Materials Testing System, closed-loop, servohydraulic machine, 97
Mechanical joints, pin-loaded holes, 150–169
Mechanically fastened composite joints (see Composite-metal joints)
Mechanically fastened metallic joints (see Metallic joints)
Metallic joints
adhesive bonded/bolted structural steel, 72–93
advanced fastener technology in, 5–38
cold working fastener holes, 53–71
fastener flexibility effect, 221–249
load transfer in, 95–117, 221–249
riveted, 172–189
stop-drill repair of, 190–219
Microscopes
optical, 62
projection type, 154
scanning electron, 62
Moisture conditioning, 262
Multiple-row joints, 221–249

N
Nacelle strut, loading of, 45
table, 47
Notch root strain, 245, 248
Nuts, 14, 275

P
Photoelastic technique, for evaluation of crack problems, 150–169
Pin-loaded holes, 155–166
Pip flaws, 67
Plane-strain fracture toughness, ASTM Standard E 399–83: 60
Plane stress, 155
Polymethyl methacrylate (PMMA), 164
Polysulfide sealant, 173
Power metallurgy aluminum alloys, 172–189
Precracking, cold-worked fastener holes, 58, 62–63
graph, 64
Probabilistic fracture mechanics, 118–141
Profile projector, 153
R
Reaming, 54–55, 57, 61–62, 64, 194
graph, 61
Repair, stop-drill, 190–219
Riveted joints, 19–22, 172–189, 226–
227
Rivet force (see Load transfer)
Rivets
conventional flush, 14–19
crown-flush, 14–19
graph, 14
protruding head, 172
sleeved aluminum, 19–24
Rotation of fasteners, 221–249
S
Salt-spray corrosion, 19–20
Sealants
polysulfide, 173
PR 1436 sealing compounds, 227
tetrafluoroethylene (Teflon), 10–12
Servohydraulic Material Testing
System, 97
Shearing plane, adhesive bonded/
bolted steel joints, 80
Shear joints, 97–115
Shear strength, sleeved bolts, 21–22
table, 23
Shims, tetrafluoroethylene-coated, 12
Shrink-fit installation, 39–52
Single-lap joints, 253
Single-shear joints, 226–227, 238,
256
graphs, 240, 261
table, 229
Small crack size, 119, 141
S-N curves, 285
Sonntag fatigue testing machine, 275,
279
Specimen edge distance, tensile re-
response of bolted joints, 253
graphs, 259
Specimen width, fatigue life bolted
joints, 253, 276–285
graphs, 257
Spliced joints, 175–189
Splices, beam, test specimens for
adhesive bonded/bolted
joints, 73–93
illustration, 75
Splices, tension, test specimens for
adhesive bonded/bolted
joints, 73–93
illustration, 74
Split-sleeve cold hole expansion, 53–
71
Standards (see also ASTM Stan-
dards)
for fatigue test specimens, 7–8
MIL-STD 1312, 14
Static strength, adhesive bonded/
bolted steel joints, 72–93
Static tests, bolted composite-metal
joints, 253–269
Steel
alloys, bushings, 24, 43–52
bolts, 21, 194, 261, 269
bridge, 73
fasteners, 226, 261
joints, 72–93
lugs, 42
plates, 275
sleeved rivets, 19–24
Stochastic crack growth
analysis, 122–127
illustration, 128
model, 118–141
Stop-drill repair, 190–219
Strain-gage equipped extensometer,
227
Stress
compressive
cold worked holes, 55–57, 68–
69, 199–203
Stress (cont.)
  ForceMate installed bushings, 42
  corrosion, 8–10
  illustration, 11
  residual, 42, 199–203
Stress-coining, 10, 31–37
  methods and tooling, photograph, 36
Stress distribution, cold worked holes, 199–203, 207–208
Stress intensity factor
  dogbone joints in aluminum, 104, 166–117
  open and pin-loaded joints, 150–170
  slotted hole (stop-drill repair), 205–209
Stress-life model, bolted composite-metal joint, 285
Stress ratio, 97

T
Teflon (see Tetrafluoroethylene)
Temperature, elevated, effect on fatigue tests of bolted composite-metal joints, 262
Tensile response
  bolted composite-metal, 251–273, 277
  shear head bolts, 12–14
Tension-tension cyclic tests, 275–285
Tetrafluoroethylene
  on faying surface, 10–12
  on shanks of fasteners, 10–12
Three-dimensional fracture problems, 166–169
Thumb-nail flaw shape cracks, 155, 156
Titanium
  in fasteners, 57, 261, 272
  in lugs, 42
  in rivets, 15, 19–20

W
Weight reduction of fasteners, 12–14
  illustration, 13
Welding of cover plates, 72–93
Width, specimen, 253, 276–285