Subject Index

A

Aerospace industry
applications of Beta-C for, 163
applications of titanium and zirconium in, 123

Alkali chloride industry, titanium applications in, 7-9; table, 8, 10

Aluminothermic reduction of oxide, 103-4, 105-6

Aluminothermy, 103-4, 106

Aluminum, as alloy on corrosion resistance of titanium, 137, 145

American Society of Mechanical Engineers (ASME), Boiler and Pressure Vessel Code, 117

ASTM standards
B 337: 44, 48-49, 53
B 600: 124
E 23: 46
E 606: 48
E 813: 46
G 2: 121
G 30: 133-34

ASTM Committee B-10, 122-28

Austenitic stainless steels, behavior of, in comparison with zirconium and titanium, for corrosion, 71-75; illustration, 71-73

Autoclave corrosion testing, in the waste treatment industry, 22; illustration, 23; table, 23

B

Beta annealing, 148, 150; illustration, 149

Beta-C
in aerospace industry, 163
applicability of, for seawater piping, 163
chemical composition of, 145; table, 145
corrosion hydrogen absorption, 161; table, 161
localized corrosion, 158; illustration, 159; table, 159
stress-corrosion cracking, 158, 160; table, 160
uniform attack, 152-53, 158; illustration, 156-57
formability of, 163
heat treatment of, 148, 150-51; illustration, 150
industrial applications for, 144-163
physical metallurgy, 145-47; illustration, 146
processing of, 148
properties of, 151-52; illustration, 153; table, 152, 154-55
structure property relations, 147-48; illustration, 149
weldability of, 162

Bhabha Atomic Research Centre, 100, 102-3
Bimetallic tubing, See Zirconium-steel bimetallic tubing
Blended elemental approach to powder metallurgy, 195-96; illustration, 196, 197; table, 196
Brine electrolysis, 4-5

C
Calciothermic reduction of oxide, 103, 107-8
Calciothermy, 106
Calcium reduction of tantalum oxide, 105
Carbon deoxidation, 102
Carbothermy, 101
Castings, as titanium net shape technology, 200-203, 206; illustration, 201, 202; table, 203
Charpy impact testing, for titanium alloys, 46, 49; table, 49
Chemical processing industry, tantalum applications in, 111
Chlor-alkali industry
commercialization of dimensionally stable anodes technology for, 3-4
use of graphite anode technology for brine electrolysis, 4
Chromium, as alloy on titanium, 137-38, 145
Cold deformation, applications of zirconium for, 165
Corrosion resistance, ix
effect of chemical composition on, 123-25
effect of surface finish on, 125-26
effect of thermo-mechanics on, 125
of high strength titanium alloys, 130-143; illustration, 134, 135, 137, 138; table, 132, 133, 136-140
reliability of reactive metals, 118, 121
Crevice corrosion resistance, 13
Beta-C performance, 158; illustration, 159; table, 159
of titanium alloys, 9, 139; table, 140, 141
Crevice corrosion tests, for titanium alloys, 132-33; illustration 134; table, 133
Cutting tool industry, hafnium applications in, 111

D
Dimensionally stable anodes technology, commercialization of, for chlor-alkali production, 3-4
Ductility, of Beta-C, 152; illustration, 153

E
Elastic-plastic fracture toughness testing, for titanium alloys, 46-47, 49; table, 50.
Electrochemical industry, applications of titanium anodes in, 120
Electrolytic industry
titanium as a electrode support in, 3-6
use of titanium fabrications, ix
Electron beam melting, in the nitride-denitride process, 104-5
Electrowinning industry, titanium applications in, 5
Explosive bonding billet process for bonding copper and zirconium, 87, 90-91
expansion method, 87, 90; illustration, 89
implosion method, 87, 90; illustration, 89
F-G

Fatigue behavior, of titanium alloys, 48, 49–51; illustration, 50, 51
Federal Clean Air Act of 1970, 30
Ferric chloride, effect of Beta-C on corrosion resistance, 153, 158
Ferro-niobium, 109–10
Flue gas desulfization (FGD) systems 
titanium for, 30–2 
experimental procedure, 31–34; 
illustration, 32; table, 33
inlet ducts, 34, 37, 40
mechanism of corrosion, 40–41
outlet ducts, 34, 38; illustration, 37; table, 35
Formability, of reactive metals, 126–28
Fracture toughness, of Beta-C, 152; 
table, 155
Fused salt electrolysis, 101, 106–7
Graphite anodes, replacement of, 
with titanium anodes, 8

H

Hafnium 
applications of, 111
calciothermic reduction of oxide, 107–8
ferro-niobium, 109–10
halide decomposition, 101, 108–9; 
table, 109
halide reduction, 106, 108
Halide decomposition, 101, 108–9; 
table, 109
Halide reduction, 106, 108
Heat exchangers, use of titanium 
fabrications for, ix
Heterogenous joints 
between zirconium and titanium 
and stainless steel, 181, 183, 185–90, 192
flanged joints, 183; illustration, 185

nondismountable joints, 183, 185–90; illustration, 186
HIP’ing, 198–99, 201; illustration, 199, 202
Hydrochloric acid, effect of, on cor­rosion resistance of titanium 
alloys, 134–36; illustration, 135, 137; table, 136
Hydrofluoric acid, influence of, on 
corrosion resistance of 
zirconium, 77–78, 82; table, 79
Hydroforming, 167; illustration, 169
Hydrogen absorption, for Beta-C, 161; table, 161

I

Industrial applications 
for Beta-C, 144–63
for hafium, 111
for molybdenum, 110
for molybdenum trioxide, 110
for niobium, 110–11
for niobium pentoxide, 110
for niobium-Vandium, 111
for tantalum, 110–11
for tantalum pentoxide, 110
for titanium, ix, 3–6, 7–13, 30–42, 
43–54, 118, 120, 123; illustration, 32, 44; table, 8, 10, 11
for zirconium, ix, 85–99, 123, 165; 
illustration, 88, 89; table, 92
Iron 
effect of alloyed in titanium and 
zirconium, 124–25
effect of, as alloy on corrosion re­sistance on titanium, 137–38
effect of, on corrosion resistance of 
reactive metals, 124–25
Irradiated fuel-reprocessing installa­tions, use of zirconium in, 164
Isostatic forming, 167; illustration, 170
Isothermal precision forging, as titanium net shape technology, 203-5, 206; illustration, 204, 205

J

J-integral test, for titanium alloys, 47-48
Joinability, of reactive metals, 128

M

Membrane technology, use of, by alkali chloride plants, 8
Metallothermy, 101
Microstructure analysis, of titanium alloys, 48, 51, 53; illustration, 52
Molybdenum
as alloy, on titanium, 137, 138, 145, 153
industrial applications of, 110
Molybdenum trioxide, industrial applications of, 110

N

New Source Performance Standards (NSPS), 30
Niobium
aluminothermic reduction of oxide, 103-4; table, 104, 105
calciothermic reduction of oxide, 103
corrosion resistance of, 59
industrial applications of, 110-11
nitride-denitride process, 104-5
Niobium pentoxide, industrial applications of, 110
Niobium-vandium alloy, industrial applications of, 111
Nitric acid environment
behavior of zirconium in, 75-76; table, 70
effect of Beta-C on corrosion resistance, 153
Nitric acid environment corrosion studies
use of zirconium in, 69-84; table, 70
comparative study of zirconium, titanium and austenitic stainless steels, 71, 74-75; illustration, 71-75
influence of hydrofluoric acid, 77-78; table, 79
influence of phosphoric acid, 77; illustration, 79
stress corrosion cracking experiments, 79-81; table, 80
tests in nitric acid, 75-76; table, 70
tests in water at 200°C, 77; illustration, 78
zirconium/austenitic stainless steel galvanic coupling, 76
Nitric acid hypochlorite services, titanium applications in, 118
Nitric acid solutions
zirconium for, 57-68; illustration, 58
advantages of, 67
effect of solution impurities, 61-64; table 62-63
limitation of, 67
pure acid, 59-61; illustration 60; table, 60
stress corrosion cracking (SCC) susceptibility, 64-66; table, 65
Nitride-denitride process, 104-5
Nuclear industry, application of titanium and zirconium in, 123

O

Oil and gas wells, use of zirconium-steel bimetallic tubing for, sour gas gas corrosion resistance,
85–98; illus. 88–89, 94–95; table, 92
Oxide film on reactive metals, corrosion resistance of, 120
Oxygen, effect of, on corrosion resistance of reactive metals, 124, 125

Petrochemical industry, reliability of titanium and zirconium equipment in, ix
Phosphoric acid, influence of, on corrosion resistance of zirconium, 77, 82; illustration, 79
Piping systems, use of titanium fabrications for, ix
Platinum-iridium titanium anode technology, 4
Powder metallurgy, as titanium net shape technology, 195–99, 206; illustration, 196, 197, 199; table, 196
Prealloyed approach to powder metallurgy, 198–99; illustration, 197, 199; table, 196, 200
Pressure vessels, use of titanium fabrications for, ix
Process industry, required reliability of reactive metals in, 115–29

Reactive and refractory metals, see also niobium; tantalum
effect of iron on corrosion resistance of, 124–25
effect of oxygen on corrosion resistance of, 124, 125
effect of sulfur on corrosion resistance of, 124, 125
effect of surface finish on corrosion resistance of, 125–26
formability of, 127–28
industrial applications of, 110–11
in-service mechanical properties of, 126
joinability of, 128
production of, 100–103
required reliability of, in the process industry, 115–29
thermo-mechanical history of, 125
Ruthenium oxide, 8
effect of, on titanium, 4

S
Seawater piping
applications of Beta-C for, 163
titanium alloy applications in, 43–54; illustration, 44
charpy impact toughness, 49; table, 49
chemical analyses, 46; table, 47
elastic-plastic fracture toughness, 49; table, 50
experimental procedure, 46–48
extrusion to plate, 45
fatigue behavior, 49–51; illustration, 50, 51
heat treatment, 45; illustration, 46
ingot and billet production, 45
material, 45
microstructures, 51, 53; illustration, 52
stress corrosion cracking performance, 51
tensile properties, 48–49; table, 48
welding, 45
Shaking autoclave corrosion testing, for toxic wastes, 17–18
Sodium chlorate cell technology, 5
Solution treatment, see Beta annealing
Sour gas corrosion resistance, use of zirconium-steel bimetallic tubing for, in oil and gas wells, 85-98; illustration, 88-89, 91; table, 93
Steel electrogalvanizing, use of titanium anodes for, 5
Steel industry
niobium applications in, 110
tantalum applications in, 110-11
Stress corrosion cracking (SCC) susceptibility studies
Beta-C performance, 158, 160; table, 160
effect of thermal stress relief in prevention of, 125
evaluation for, in waste treatment, 17-18
of titanium alloys, 48, 51, 131, 134, 140-41; table, 52
of zirconium, 64-66; table, 65, 66, 82
Sulfur, effect of, on corrosion resistance of reactive metals, 124, 125
Sulfuric acid service, zirconium applications in, 118
Superconductor industry, niobium applications in, 110

Titanium
applications of, in alkali chloride and refined salt industries, 7-13, table, 8
applications of, for flue gas desulfization (FGD) systems, 30-42; illustration, 32
experimental procedure, 31-34; illustration, 33; table, 33
inlet ducts, 36, 37, 40; table, 39
mechanism of corrosion, 40-41
outlet ducts, 34, 36; illustration 37; table, 35
applications of, in alkali chloride industry, 7-9; table, 8, 10
applications of, in vacuum refined salt industry, 10, 12; table, 11
behavior of, in comparison with zirconium and austenitic stainless steels in nitric environments, 71-75; illustration, 71-73
benefits of using Grade 12 over Grade 2, 28
effect of alloyed iron in, 124
as electrode support in industrial applications, 3-6
in nitric acid hypochlorite services, 118
properties of, 6

Tantalum
aluminothermic reduction of oxide, 105-6; table, 105
calcium reduction of tantalum oxide, 105; table, 104
corrosion resistance of, 59
fused salt electrolysis, 106-7
halide reduction, 106
susceptibility of, to form passive or non-conducting oxide, 5
susceptibility of, to hydrogen embrittlement, 4
use of, in treatment of toxic and hazardous wastes, 14-28
Grade 12 titanium, 25-26; illustration, 26
operating experience, 21-22; table, 22
process description, illustration, 15-16
process equipment, 16-17; illustration, 17
screening test results on feed wastes, 22-23; illus. 23; table, 23
test program for materials selection, 17-18; table, 18
test program results, 18-21; illus. 20; table, 18
Titanium alloy, see also Beta-C
applications of, in alkali chloride and refined salt industries, 7-13, table, 8
fundamental corrosion characterization of high-strength, 130-43; illustration, 134; table, 132
properties of, 6
for seawater piping applications, 43-54; illus. 44
charpy impact toughness, 49; table, 49
chemical analyses, 46; table, 47
elastic plastic fracture toughness, 49; table, 50
experimental procedure, 46-48
extrusion to plate, 45
fatigue behavior, 49-51; illustration, 50
heat treatment, 45; illustration, 46
ingot and billet production, 45
material, 45
microstructures, 51, 53; illustration, 52
stress corrosion cracking performance, 51; table, 51
tensile properties, 48-49; table, 48
welding, 45
Titanium anodes, applications of, in electrochemical industry, 120
Titanium equipment, reliability of, ix
Titanium fabrications, industrial applications of, ix
Titanium net-shape technology, 194-208
castings, 195, 200-3; illus. 201; table, 203
isothermal precision forging, 195; 203-5; illustration, 205
powder metallurgy
blended elemental, 195-96; illustration, 196, 197; table, 196
prealloyed approach, 195, 198-99; illustration, 199; table, 196
Titanium substrate electrode technology
advantages of, 3-4
limitations of, 4-6
Toxic and hazardous waste treatment
use of titanium in, ix, 14-29
Grade 12 Titanium, 25-26; illustration, 25
operating experience, 21-22; illustration, 23; table, 22
process description, 15-16; illustration, 16
process equipment, 16-17; illustration, 17
test program for materials selection, 17-18; table, 18
test program results, 18–21; illustration, 20; table, 18
Tramp iron, 124

U

U-bend specimen testing
for stress corrosion cracking, 64–65; table, 65
for titanium alloys, 133–34; table, 140, 141
Utility flue gas desulfurization systems, use of titanium equipment for, ix

V

Vacuum refined salt industry, titanium applications in, 10, 12; table, 11
Vanadium, effect of, as alloy on corrosion resistance on titanium, 137, 145

W

Welding
of zirconium, 167–68
risk incurred by lack of protection, 179, 181; illustration, 182; table 180
structural changes and effects, 170, 172, 174, 178; illustration, 171, 173; table, 173
weld defects, 168–70
Wet air oxidation (WAO) waste treatment process, 15
Grade 12 Titanium, 25–26; illustration, 26
operating experience, 21–22; illustration, 23; table, 22
process description, 15–16; illustration, 16
process equipment, 16–17; illustration, 17
test program for material selection, 17–18; illustration, 18
test program results, 18–21; illustration, 18

Z

Zirconium
effect of alloyed iron in, 124–25
effect of, as alloy on corrosion resistance on titanium, 137–38
effect of, on titanium, 145
in nitric acid services, 57–67; illustration, 58
advantages of, 67
effect of solution impurities, 61–64; table, 62–63
limitations of, 67
pure acid, 59–61; illustration, 59; table, 60
stress corrosion cracking susceptibility, 64–66; table, 65
in nitric environment corrosion studies, 69–84; illus. 71–75, 77; table, 70
influence of hydrofluoric acid, 77–78, table, 79
influence of phosphoric acid, 77; illustration, 79
stress corrosion cracking experiments, 79–81; table, 80
tests in water at 200°C, 77; illustration, 78
zirconium/austenitic stainless steel galvanic coupling, 76
in sulfuric acid services, 118
Zirconium equipment, reliability of, ix
Zirconium fabrication, 164–93
forming, 165–67; illustration, 165–170
heterogeneous joints, 181, 183,