Subject Index

A

Acenaphthynes, 15
biphenyl, 16
Acetone in determining field-ionization sensitivities for saturated hydrocarbons, 49
Alcohols, cyclic, 25
Algal materials, 82, 90 (see also Kerogens)
degradation, 104
fresh water, 94
Alginites, recent, 81
Aliphatic acids, 32
carboxylic, 94
Aliphatic compounds, 51, 90–91
Aliphatic hydrocarbon spectra, 102
Alkadienes, 84–85, 87–88
Alkanes
n-alkenes, 51–52, 55–79, 85
in Paraho shale oil naphtha, 9, 25
cyclic, 8, 16
normal, 7
Alkenes, 84
n-alkenes, 85
in Paraho shale oil naphtha, 8, 16
cyclic, 23
Alkylbenzenes, 19
Alkyl-carbon dependence, 67
American Petroleum Institute (API),
60 nonaqueous ion-exchange method, 28
Amide/pyridine 3 (AM/P3), 39–40,
41–47
Asphaltene fractions, 28
ASTM Committee E-14 on Mass Spectrometry, 6
ASTM 70-eV EI/MS group-type method, 72–73, 76
ASTM Standard, D 2786: 50, 53, 54,
76–78
Azaaromatics, 30, 35

B

Benzene, 19
Benzoic acids, 31–32
Benzothiophene, 19, 25
Bicyclo(4.3.0.)nonane, 68–69, 70
Biomarkers, 18, 121–124, 135–138
Bitumen, 125, 136–138
Botryococcus braunii, 84–104
Botryococcus rubber (BOR), 82–104

C

Carbon disulfide, 107
Carbon isotope ratios, stable, 135
Carbon number range, 70–72, 74,
76–79
ratioing, 134–135
Chemiluminescence detection, 39
Chromatography
absorption liquid, 137
gas, 54–55
gas/flame-ionization detection
(GC/FID), 53, 76–79
gas/mass spectrometry, 5
improvements in, 137–138
pyrolysis gas (Py-GC), 82
silica gel and basic/neutral alu-
mina adsorption, 39, 42
Coal
subbituminous, 104
vitrinite-rich low rank, 102–104
Coorongite (COO), 82–104
Cycloalkanes, 51–52, 55–79
Cyclohexane, 116, 118

D

Decalins, 56, 58–79
Diesel fuel marine, 39, 45
Dimerization, 44
Dimethoxybenzaldehydes, 15, 17
Discriminant analysis, 84, 97–104
Electron-impact mass spectrometry (EI/MS), 50-51, 59, 72-79
Epimers, 137

Feedstock composition, 37
Field ionization, synfuel analysis with, 47
Field ionization (FI) mass spectrometry
of acid and base fractions, 31-37
of saturated hydrocarbons, 50, 54, 69-79
Field ionization sensitivities for saturated hydrocarbons, 49
Fischer assay oil shale pyrolysis gas samples, 115-116, 118
Flame-ionization detection/gas chromatography (FID/GC), 53, 76-79
Flame-ionization detector (FID) gas chromatogram, 7
Fluorenes, 15
Fractionation, 39, 40-41, 44
Fractions, oil
acid, 27, 29, 31-32
base, 27, 30, 33-37
neutral, 30
nitrogen, 39
Fragmentation, 51
hopane, 123
Fuel products
fractionation, 39, 40-41
mass spectrometric analysis, 42
compared with titration analysis, 42-45
potentiometric titration, 40-41
Fuels
biodegradation, 122, 129-133
diesel, 39, 45
fossil, 50, 121-122, 126
jet, 39, 41, 44
maturation, 121, 125-126, 137
migration, 121, 137

Gas analysis, on-line, 106
Gas chromatographic analysis
pyrolysis (Py-GC), 82
of saturated hydrocarbons, 54-55
Gas chromatographic/flame-ionization detection (GC-FID), 53, 76-79
Gas chromatographic/mass spectrometric (GC/MS) analysis improvements, 137-138
of Paraho shale oil, 5
Gas samples, 115-116, 118
Gasoline, 39
GCK (automatic quantitation procedure), 10-15, 19-25
Grab sample techniques, 114-116, 118
Gram sensitivities, 57-59
Green River oil shale, 27, 39
kerogen, 82-104
Mahogany Zone, 108

Heterocarbon fragments, 23
Homohopanes, 124-126, 138
Hopanes, 122-125, 132
Hydrocarbons
aliphatic, 90-91
aromatic, 31, 50-51, 66, 72, 91
isoprenoid, 75-7, 88-89
saturated, 49
steroid, 133-136
Hydrogen sulfide, 107
Hydrogen/carbon ratio, 135
INDEX 145

I
Ion detection, multiple, 6
Ion intensities, molecular, 51, 72
distribution, 46
of kerogens, 90-96
Ion scans, daughter, 109, 114, 117
Indanes, 19, 21
Indenes, 22
Indoles, 25
Isomers
 2-methyl, 7
 structural, 82
Isoprenoid hydrocarbons, 75-77,
 88-89, 102
Isopropanethiol, 115, 118

J
Jet fuel, 39, 41, 44

K
Kentucky oil shale, 27, 115-116
Kerogens, key world oil shale, 81
Ketones, 25
Kukersite kerogen, 82-104

L
Lignins, 91
Lignite, 103-104
Linear regression analysis, 67-68

M
Magnet, fast scanning laminated,
 137-138
Magnetic scanning multiple ion de­
tection (MID), 138
Mass spectral analysis (see also Gas
 chromatographic/mass spectromet­
 ric analysis)
of acid/base shale oil fractions, 27
collisionally activated dissociation
 (CAD), 109, 110
of fuel products, 42-45, 46-47
of hydroprocessed shale oil prod­
 ucts, 38
 normal scans, 110
 petroleum exploration and, 121
 pyrolysis, 81
 integrated mode, 83-84
 time-resolved mode, 84, 90-92
Mass spectrometry/mass spectrom­
 etry (MS/MS), triple quadru­
 pole, 106
Messel shale kerogen, 82-104
Methoxyphenols, 15, 17
Mole sensitivities, 55-56, 64, 67-68
Molecular weight and gram sensiti­
 vity, 59-65
Multiple array processor (MAP),
 122, 130, 132
Multivariate analysis, 81, 84
 computerized, 97

N
Naphtha, Paraho shale oil, 7-9, 14-
 19
 quantitation, 10-15, 19-25
Naphthalenes, 7-9
National Institute for Occupational
 Safety and Health (NIOSH)
 permissible exposure limits, 107
Nitrogen-containing compounds
 in shale oil acid and base fractions,
 35-37
 in hydroprocessed shale oil prod­
 ucts, 38
NORMA program, 84
On-line monitoring (see Gas analysis, on-line)

Oxygen-containing compounds, 34-37, 94, 97

Pachysphaera, 94
Paraho direct heat process, 39
Paraho oil shale, 5
Pentacyclic triterpanes, 122
Perhydronaphthacene/perhydropenta­
threne, 59, 63-79
Perhydrofluorene, 56, 58
Petroleum exploration, 121
Phenanthrene, 18, 19
Phenols, 18, 19, 23, 25
in eastern shale oil, 31-32
polynuclear aromatic, 31
Pollutants, atmospheric, 107
Polymerization, 44, 47, 87
oxidative products, 104
Potentiometric titration of hydropro­
cessed shale oil products, 38
Preasphaltenes, 28-29
Pyridines, 23, 25
pyridine 1 (P1), 42, 44-47
pyridine 2 (P2), 39-40, 41-47
Pyrolysis mass spectrometry, 81
integrated mode, 83-84
time-integrated mode, 84, 90-96
Pyrrole (PYR), 39-40, 41-47
Pyrrole/arylamine (PYR/AR), 39-40, 41-47

Quinoline compounds, 42

Residuum, 39
Rocky Mountain Overthrust Belt, 127-128

Saturates, 49
Shale oil
acid and base fractions, 27
California crude, 134
Cambrian, 133
Cretaceous, 122, 127-128
crude, 39
eastern, 27
Fischer assay gas samples, 115-116, 118
Green River, 27, 39, 82-104, 108
hydroprocessed products, 38
immature, 122-124
key world kerogens, 81
Kingak, 135-136
Kuparuk River oil, 135
mass spectrometry of products, 38
Paraho
GC/MS analysis, 5
nitrogen- and oxygen-contain­
ing species, 25
Phosphoria, 125
Post Neocomian, 135
potentiometric titration of pro­
ducts, 38
processing, 106
problems, 109
Prudhoe Bay Field, 134-135, 136
pyrolysate gases, 112, 118
Sag River, 135
saturates analysis, 49
separation techniques, 28-29
Shublik, 135-136
trace sulfur compounds from pro­
cessing, 106
western, 27, 115
Statistical Package for the Social Sci­
ences (SPSS), 84
Sterane stereoisomers, 125-129, 130,
133-134, 137
fragmentation, 129
Stereochemical evolution, 125-126
Steric hindrance, 40-41
Styrenes, 19, 21
Sulfur compounds, trace, 106
corrosive effects, 107-108
detection and analysis, 110-119
production and removal, 108-109
Sulfur dioxide, 107
Synfuel analysis, 47

T
Tasmanite kerogen, 82-104
Tasmanites punctoides, 94
Terpane, 124-125, 129, 132, 136
Terpene, 19
Tertralins, 19, 21
Thiophenes, 8, 25, 115-116, 118

Titration analysis of fuel products, 42-45
Toluene, 19
Torbanite kerogen, 82-104
degradation, 90
Tricyclo(6.4.0.0^1)dodecane, 71
Triple quadrupole mass spectrometry/mass spectrometry, 106

V
Volatility of oil fractions, 30

X
Xylenes, 9