Subject Index

A

Aerospace industry, 104
Aging, 196, 330
resistance, 65
Aluminum, 18, 56, 79
American Society of Mechanical Engineers code, 3, 353
Anvil block, 249
ASTM standards, 353
A 707, 196
Austenite grain size, 160
Austenitizing, 33
Aviation industry, 104

B

Bearing journal wear, 129
Blow force, maximum, 249
Bottom pouring, 93
Bursts, forging, 241

C

Carbon, 79, 104, 196
carbon monoxide reaction, 56
Chromium, 33, 330
Chromium ferritic steel, 267, 317
Chromium-manganese-nickel alloy, 79
Chromium-molybdenum-nickel-niobium steel, 259
Chromium-molybdenum vanadium steel, 3, 241, 305
Copper precipitates, 196
Corrosion resistance, 104, 259
Corrosion, stress, 280
Cracking, premature, 148
Crack propagation, unstable, 160
Crankshafts, grain flow, 129
Creep, 3, 280
rupture strength, 267, 317
CRONIDUR, 104

D

Deformation, 249
Density difference, 305
Deoxidation, 18, 56
Detection and characterization, 213
Die-forging hammer, 249
Disk forgings, 280
Disk manufacturing, process model development, 116

E

Electric Power Research Institute, 280
Electric utility applications, 280
Embrittlement, 3, 280

F

Fatigue
crankshaft, 129
life, 148
low cycle, 330
FEM modeling, 224
Ferrite, 65
Ferritic steel, 267, 317
Finite element method, 224
Flake-like defect, 241
Flaking, 241, 344
Flasks, transport, 79
Fracture, 241
brittle, 160
ductile, 160
toughness, 330
toughness, plane strain, 18

G

Gear component forging, 241
Generators, 129
rotors, 213
Geothermal power station, 259
Grain flow crankshaft, 129
Grain refining, 56
 precipitates, 160
Grain size, 79
 austenite, 18

H
Hammer, die-forging, 249
Hardness, aviation stainless steels, 104
Head-forming, 224
Hydrogen, 344
Hydrogen damage, 3
Hydrogen flakes, 241

I
Impact toughness, 160
Inclusions, effect on toughness, 305
Indication sets, 213
Induction hardening, 129
Ingot cogging, 224
Ingot production, 93
International business, 353

J
Joint ventures, 353

L
Ladle refining, 93, 344
Laves phase, 317
Lead liner, 79
Locomotive engine crankshafts, 129

M
Machining, 116
 distortion following, 148
Manganese, 18, 79, 305, 330
Martensite, 160
Mechanical stress relief, 148
Models and modeling
 computer assisted design, 224
 development, simplified forging, 116
FEM, 224
 methodologies, 224
 prediction, 305
Molybdenum, 3
 carbides, 33
 effect on creep rupture strength, 267, 317
 effect on segregation, 305
 in martensitic stainless steels, 104, 259
 in pressure vessel steels, 3, 18
 in steel forging bursts, 241
 in superclean steels, 330

N
Nickel, 305, 330
 in pressure vessel steel, 18, 33
 in steel forging bursts, 241, 259
 in transport casks, 79
Nickel chromium molybdenum vanadium, 241
Nil-ductile transition temperature, 18, 33
Niobium, 104, 259, 305, 317, 330
Nitriding, 129
Nitrogen, 104, 330
Nitrogen-alloyed stainless steels, 104
Nozzle integration, 56
Nuclear power plant forgings
 pippings, 65
 pressure vessels, 18, 33, 93
 steam generators, 56
 transport casks, 79

O
Open die forging process, 224
Optimization, forged disk manufacturing processes, 116

P
Piping, primary, 65
Power generation diesel engine crankshafts, 129
Precipitates, copper, 196
Pressure vessels
 nuclear, 18, 33, 93
 oil industry, 3
Pressurized slag remelting, 104
Process model development, 116
Punch forming, 224
<table>
<thead>
<tr>
<th>R</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rhenium, 317</td>
<td>Tensile strength, 259</td>
</tr>
<tr>
<td>Rolls, 93</td>
<td>Tension leg platform, 196</td>
</tr>
<tr>
<td>Rotors, 93, 213, 259, 267, 344</td>
<td>Thermal efficiencies, 267</td>
</tr>
<tr>
<td>superclean steels, 280, 305</td>
<td>Thermal flakes, 241</td>
</tr>
<tr>
<td>S</td>
<td>Transport flasks, spent nuclear fuel, 79</td>
</tr>
<tr>
<td>Segregation prediction, 305</td>
<td>Tungsten, 317</td>
</tr>
<tr>
<td>Silicon, 33, 56</td>
<td>Turbine disks or blades, 104, 317</td>
</tr>
<tr>
<td>Silicon killing, 18</td>
<td>Turbine rotors, 213, 259, 267, 280</td>
</tr>
<tr>
<td>Steam drum head integration, 56</td>
<td>Turbine, steam, 317, 330</td>
</tr>
<tr>
<td>Steel and steel alloys</td>
<td>U</td>
</tr>
<tr>
<td>A 508, Class 3, 18</td>
<td>Ultrasonic testing, 65, 241</td>
</tr>
<tr>
<td>A 508, Grade 1, 33</td>
<td>rotor, 213</td>
</tr>
<tr>
<td>AISI 304L, 65</td>
<td>Upper-nose temper embrittlement, 33</td>
</tr>
<tr>
<td>carbon-manganese-nickel alloy, 79</td>
<td>V</td>
</tr>
<tr>
<td>chromium ferritic, 267, 317</td>
<td>Vacuum carbon deoxidation, 18, 56</td>
</tr>
<tr>
<td>chromium-molybdenum (vanadium), 3, 241, 305</td>
<td>Vacuum degassing, 344</td>
</tr>
<tr>
<td>copper-bearing, 196</td>
<td>Vacuum stream degassing, 93</td>
</tr>
<tr>
<td>ferritic, 267</td>
<td>Vanadium, 3, 104, 241, 305, 330</td>
</tr>
<tr>
<td>forged, 79, 344</td>
<td>Vibration stress relief, 148</td>
</tr>
<tr>
<td>high strength, 160</td>
<td>W</td>
</tr>
<tr>
<td>low alloy, 196, 213</td>
<td>Welding, 148</td>
</tr>
<tr>
<td>manufacturing, 93</td>
<td>Welds, 65</td>
</tr>
<tr>
<td>SA508, Class 3, 56</td>
<td>distortion and cracking, 148</td>
</tr>
<tr>
<td>stainless, austenitic, 65</td>
<td>Worldwide business, 353</td>
</tr>
<tr>
<td>stainless, martensitic, 104, 160, 241, 259</td>
<td>Y</td>
</tr>
<tr>
<td>superclean, 280, 305, 330</td>
<td>Yield strength, 259</td>
</tr>
<tr>
<td>Stress corrosion, 280</td>
<td></td>
</tr>
<tr>
<td>Stress relief, 148</td>
<td></td>
</tr>
<tr>
<td>Structure property relationships, 196</td>
<td></td>
</tr>
<tr>
<td>Sulfur flaking, 344</td>
<td></td>
</tr>
</tbody>
</table>