Subject Index

A

Airframe structures, design, durability analyses, 520
Ascent mission cycle test, 395
Axial loading, 5

B

Bridged fatigue cracks, life prediction, 552
Bridging effects, 552
Bridging fiber stress, 137
distribution, 43

C

Cladding, monolithic, 164
Coefficient of thermal expansion, 412
mismatch, 66
Complementary dissipation potential, 231
Compression, 208
Computational simulations, fatigue behavior, high temperature metal
matrix composites, 540
Computer codes, 540
Constitutive relationships, 257
Constitutive response, 208
Correlations, 231
Crack arrest, fiber-reinforced composites, 164
Crack bridging, 114, 137, 432
Crack growth
fatigue cracks, 552
resistance under cyclic loading, unbridged defect, 461
Crack initiation
notches, titanium matrix composites, 359
titanium aluminide composite, 58
Crack opening displacement, 137
Crack propagation, 114
Cracks
bridged fatigue, 552
initiation and growth, and residual strength, 497
Creep
fiber-reinforced composites, 185
room-temperature, inelastic deformation, 257
titanium matrix composites, 5
Cross-ply composites, inelastic cyclic response, 297
Cross-ply laminates
stress transfer mechanics, 85
Cyclic loading, 43
crack growth resistance under cyclic loading, unbridged defect, 461

D

Damage
accumulation, 185
evolution, 377
initiation, 520
growth, and residual strength, 497
mechanisms, matrix fatigue cracking, 395
modes, 520
progression under thermomechanical fatigue loading, 412
thermomechanical fatigue, 328
Debonding
interfacial, 257
length, 377
modeling, 328
silicon-carbide fiber-reinforced titanium alloys, 26
titanium aluminide composite, 58
Defects, unbridged, crack growth resistance under cyclic loading, 461
Deformation
inelastic mechanisms, 208
model, 231
time-dependent, 278
Degradation, damage evolution and, 377
Discrete fiber-matrix model, 278
Durability analyses, titanium matrix composites, 520

E

Eisenberg-Yen thermo-viscoplastic constitutive model, 278
Elastic fibers, reinforced laminated composite plates, 328

F

Fabrication, 328, 540

Failure
  macroscopic, titanium matrix composites, 5
  modes, 377

Fatigue, 85
  behavior simulation, high temperature metal matrix composites, 540
  bridged fatigue cracks, 552
  composites subjected to mission profiles, 572
  crack arrest, fiber-reinforced composites, 164
  crack growth resistance under cyclic loading, unbridged defect, 461
  crack initiation from notches, 359
  damage evolution and degradation of mechanical properties, 377
  damage initiation and growth, and residual strength, 497
  damage progression, 412
  durability analyses, 520
  high temperature/high frequency, 137
  inelastic cyclic response, 297
  inelastic deformation, 208, 257
  matrix fatigue cracking, 395
  notch, 114
  silicon-carbide fiber-reinforced titanium alloys, 26
  simulation of behavior, high temperature metal matrix composites, 540
  sustained load behavior, 185
  thermomechanical, 328
  time-dependent deformation, 278
  titanium alloy matrix composites, 66
  titanium aluminide composite, 58
  titanium matrix composites, 5, 43
  viscoplastic model, 231
  Fatigue crack growth, 43, 85
  rate, 137
  Fatigue crack propagation, 164
  Fatigue maps, titanium matrix composites, 432
  Fiber bridging, 85
  Fiber bridging model, 497
  Fiber/matrix interface, 185
  Fiber orientation, sustained load behavior, 185
  Fiber strength, silicon-carbide fiber-reinforced titanium alloys, 26
  Fiber stress, 43
  Finite element analysis, 5
  hot-spot thermal fatigue test, 480
  inelastic deformation, 257
  time-dependent deformation, 278
  Finite element models, titanium alloy matrix composites, 66
  Fracture, unidirectional titanium matrix composites, 432
  Fracture mechanics, 114
  Frictional shear stress, 137
  Frictional sliding
    silicon-carbide fiber-reinforced titanium alloys, 26
    titanium aluminide composite, 58
  Frictional stress, fiber/matrix, 377

G

Gibb's potential, 231

H

Hardening, nonlinear, 231
High temperatures, 595
  fatigue behavior simulation, 540
  Hypersonic applications
    matrix fatigue cracking, 395
    modeling and life prediction methodology, 572

I

Inelastic deformation, under multiaxial loading, 257
In situ measurements, 43
Interactions, 540
Interface
  fiber-matrix, 278
  mechanics, titanium matrix composites, 5
  properties, silicon-carbide fiber-reinforced titanium alloys, 26
  Interfacial debonding, 5, 257
  Interfacial shear mechanical properties, 26
  Interfacial stress, titanium aluminide composite, 58
  Interfacial toughness, 26
  Isothermal fatigue, 595
  Isothermal model, 231

L

Laminates
  inelastic cyclic response, 297
  sustained load behavior, 185
thermomechanical fatigue, 328
Lamination theory, 257
Life prediction, 26
bridged fatigue cracks, 552
crack growth resistance under cyclic loading, unbridged defect, 461
crack initiation from notches, 359
damage initiation and growth, and residual strength, 497
damage progression, 412
durability analyses, 520
fatigue behavior simulation, 540
fatigue damage evolution and degradation of mechanical properties, 377
fatigue maps, 432
fiber-reinforced composites, 164
high temperature/high frequency fatigue crack growth, 137
hot-spot thermal fatigue test, 480
inelastic cyclic response, 297
inelastic deformation, 208, 257
isothermal and thermomechanical fatigue, 595
matrix fatigue cracking, 395
models, 85
notch fatigue, 114
sustained load behavior, 185
thermomechanical fatigue, 328
time-dependent deformation, 278
titanium alloy matrix composites, 66
titanium aluminate composite, 58
titanium matrix composites, 5, 43
subjected to mission profiles, 572
viscoplastic model, 231
Linear fraction damage model, 395

M

Material removal effects, 66
Materials behavior, simulation, 540
Mechanical fatigue, simulation, 540
Mechanical properties, 114, 412
Metal matrix composites, 66, 114
cross-ply, 297
damage progression under thermomechanical fatigue loading, 412
high temperature, fatigue behavior simulation, 540
inelastic deformation, 208, 257
isothermal and thermomechanical fatigue, 595
sustained load behavior, 185
time-dependent deformation, 278
Micromechanical model, 297, 552
thermomechanical fatigue, 328
Micromechanical stresses, 595
Micromechanics analysis
inelastic deformation, 257
time-dependent deformation, 278
Modeling
bridged fatigue cracks, 552
crack arrest, fiber-reinforced composites, 164
crack growth resistance under cyclic loading, unbridged defect, 461
crack initiation from notches, 359
damage initiation and growth, and residual strength, 497
damage progression, 412
durability analyses, 520
fatigue behavior, high temperature composites, 540
fatigue damage evolution and degradation of mechanical properties, 377
fatigue maps, 432
high temperature/high frequency fatigue crack growth, 137
hot-spot thermal fatigue test, 480
inelastic cyclic response, 297
inelastic deformation, 208, 257
isothermal and thermomechanical fatigue, 595
matrix fatigue cracking, 395
notch fatigue, 114
silicon-carbide fiber-reinforced titanium alloys, 26
stress transfer mechanics, 85
sustained load behavior, 185
thermomechanical fatigue, 328
time-dependent deformation, 278
titanium alloy matrix composites, 66
titanium aluminate composite, 58
titanium matrix composites, 5, 43
subjected to mission profiles, 572
viscoplastic, 231
Mori-Tanaka model, 328
Multiaxial loading, inelastic deformation, 257
Multiaxial response, 231
Multifiber models, 66

N

Notched strength, 432
Notches, crack initiation, 359
Notch fatigue, 114
Oxidation effects, 540

P
Prediction, viscoplastic model, 231
Processing effects, 540
Push-out tests, silicon-carbide fiber-reinforced titanium alloys, 26

Q
Quasi-isotropic laminates, crack-bridging effects, 114

R
Reaction layer, silicon-carbide fiber-reinforced titanium alloys, 26
Residual stress, 572
Rupture lives, 185
Silicon-carbide reinforced titanium matrix composites, 66
Stress, maximum safe, 164
Strain mapping, 58
Tensile loading, 43
Thermal aging, 137
Thermal cycling, 5
Thermal expansion, mismatch, 85
Thermal fatigue
hot-spot test, 480
simulation, 540
Thermal residual stress, 278
Thermal strains, 572
Thermoelastic constants, microcracked composites, 85
Thermomechanical fatigue, 297, 595
damage progression, 412
matrix fatigue cracking, 395
Typical behavior, 185
Single fiber pushout testing, 5
Stress concentration, 43
Stress intensity factor, 164
Sustained load behavior, silicon-carbide reinforced titanium composites, 185

S
Scanning acoustic microscopy, hot-spot thermal fatigue test, 480
Shear-lag crack-bridging model, 114
Shear-lag model, 377
Shear zone, macroscopic, fiber buckling, 208
Silicon-carbide fiber-reinforced titanium alloys, 26
Silicon carbide monofilaments, 5
Silicon-carbide reinforced titanium alloys
crack-bridging effects, 114
residual stresses, 66
Silicon-carbide reinforced titanium matrix composites, 26
crack initiation from notches, 359
damage progression under thermomechanical fatigue loading, 412
fatigue behavior simulation, 540
fatigue damage evolution and degradation of mechanical properties, 377
hot-spot thermal fatigue test, 480
inelastic deformation mechanisms, 208
inelastic deformation under multiaxial loading, 257
isothermal and thermomechanical fatigue, 595
matrix fatigue cracking, 395
subjected to mission profiles, 572
stressed load behavior, 185
Stiffness
damage progression, 412
reduction and microstructural damage, 377
Strain mapping, 58
Stress, maximum safe, 164
Stress concentration, 43
Stress intensity factor, 164
frictional sliding, 58
Transverse failure, 58
Transverse loading, 5

U
Unidirectional composites
frictional sliding, 58
Tensile loading, 43

V
Viscoplasticity
<table>
<thead>
<tr>
<th>Subject</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>inelastic deformation</td>
<td>257</td>
</tr>
<tr>
<td>thermomechanical fatigue</td>
<td>328</td>
</tr>
<tr>
<td>time-dependent deformation</td>
<td>278</td>
</tr>
<tr>
<td>Viscoplasticity theory</td>
<td>572</td>
</tr>
<tr>
<td>Viscoplastic model, unified, fully</td>
<td></td>
</tr>
<tr>
<td>associative, nonlinear kinematic</td>
<td>231</td>
</tr>
<tr>
<td>Void formation</td>
<td></td>
</tr>
<tr>
<td>X-ray stress measurements</td>
<td>66</td>
</tr>
</tbody>
</table>