Subject Index

A

Accumulated annealing parameter, 437
Amorphization, 521, 687
Analytical scanning, 687
Anion vacancy migration, 760
Anisotropy, pressure tubes, 202, 469
Annealing parameter, 307, 328, 663, 760
Applied stress, 559

ASTM STANDARDS

B-531-92, 80
Autoclave testing, 307, 351, 483, 579, 724, 760
Axial fatigue, 499

B

Barrier fuel, 3
Barrier layer, 615
Beta quenched phase, 663
Boiling water reactors
boiling conditions, 351
corrosion behavior of zircaloy, 400, 599
corrosion environment, 709
creep anisotropy in zircaloy cladding, 469
fatigue behavior of zircaloy and zirconium, 499
heat treated pressure tube, 183
zirconium barrier fuel, 3
Boric acid, 378
Boron, 378
Burnups, in pressurized water reactors, 438, 521, 760
Burst strength, welds in zirconium, 264

C

CANDU (Canada Deuterium Uranium)
pressure tubes, 62, 116, 135, 168, 202
Calandria tubes in CANDU reactor, 264
Carbon, 221
Chemical composition, zircaloy oxidation, 80
Chlorine, 221
Chromium, in zirconium alloys, 438
Cladding, fuel, 3, 19
Cladding tubes, 549, 599
Cladding, zircaloy, 245, 285, 307, 328, 469, 599, 687, 745, 760
Cold pilgering, 245, 285
Compact tension specimen, fatigue behavior, 499
Contractile strain ratio, 469
Coolant chemistry in water reactors, effects on zircaloy corrosion behavior, 779
Corrosion, 19, 98, 116, 183
Corrosion acceleration, 378
Corrosion enhancement, 745
Corrosion inhibition, 378
Corrosion mechanism of zirconium alloys, 615, 644, 724, 760, 779
Corrosion modeling, 760
Corrosion resistance, zircaloy, 285, 307
Corrosion resistance, zirconium based alloys, 437, 483, 579, 709
Corrosion, zircaloy-2, 599
Corrosion, zircaloy-4, 351
Crack driving force, 35
Crack growth resistance, 135
Crack propagation of zircaloy-4, 559
Crack velocity, 35
Cracking, 35
Cracks (materials), zircaloy-2 tubing, 285
Creep (materials), 202, 469, 483, 521, 724
Crystallographic orientation, 559
Cumulative annealing parameter, 307, 328

D

Damage (materials), 245
Defected rods, 745
Deformation (materials), 419, 469
Delayed hydride cracking, 35, 264
Deuterium concentration, 62, 116
Diffusion, 116
Dislocations, 521
Dissolution, 521

E–F

Elongation, 168
Electron microscopy, 116
Granular oxides, 745
Growth, in-reactor corrosion performance of zircaloy, 724
Heat affected zone, 264
Heat treated pressure tube, 183
High pressure, 450
High temperature oxidation of zircaloy-4, 450
High temperature pressurized water reactors, 760
Hot rolling and annealing conditions, 307
Hydride cracking, 264
Hydride morphology, 98
Hydrides, 745
Hydriding, 19, 35, 80, 98, 599, 709
Hydrogen absorption, 579
Hydrogen analysis, 80, 116
Hydrogen concentration, 98
Hydrogen diffusion, 62, 116
Hydrogen in pressure tubes, 221
Hydrogen ingress, 62
Hydrogen mobility, 62
Hydrogen pickup, irradiation, 19, 183, 483
Hydrogen uptake in zirconium alloys, 62, 116, 760
Hydroxide, 724
I-K
In pile tests, 779
In reactor behavior, 328, 709
In reactor deformation, 469
In reactor fuel tests, 3
In reactor uniform corrosion, 745
Inspection process in manufacturing, 328
Intermetallic compounds, 307
Intermetallic precipitates
 corrosion mechanism of zirconium alloys, 615
 microstructure analysis, 419, 437, 483
 oxidation, 664, 687
Investigation methods, corrosion mechanism of zirconium alloys, 615, 644
Iodine stress corrosion cracking of zircaloy-4, 559
Ion mass spectroscopy, 116
Iron, 168
Iron, in zirconium alloys, 438
Irradiation, 135, 168, 183, 549, 687
Irradiation enhancement of corrosion and hydrogen pickup, 19
Irradiation fluence, 35
Irradiation growth, 521
Irradiation temperature, 35
J-R curves, 135
Kinetics, oxidation in zircaloy-4, 687
L-M
Large scale demonstration, 3
Light water reactors, 19, 400, 469
Lithium, 351, 378
Lithium hydroxide, 378, 779
Lithium hydroxide boric acid aqueous chemistry, 378
Loops, 351
Loss of coolant accidents, 19
Manufacturing process
 corrosion and stress behavior of zircaloy, 285, 307, 328
 pressure tubes, 221
 zircaloy, 285, 307, 328
Material chemistry effect, 709
Material samples, 709
Mechanical modeling, 245
Microchemistry, 400
Microscopy, 116
Microstructure
 corrosion parameters, 351, 483, 615, 709
effects of irradiation, 521
in-reactor corrosion performance, 724
oxide layers, 579
Model prediction, 779

N
Neutron fluence, 168, 183, 202, 499
Neutron irradiation, 521
Nickel, in zirconium alloys, 438
Niobium, zirconium- alloys, 116, 437, 579
Nodular corrosion, zircaloy, 285, 400, 419, 709
Nondestructive testing, 328
Nuclear applications
 anisotropy of pressure tubes, 202
corrosion behavior, irradiated zircaloy, 400
corrosion behavior, zircaloy, 285, 307, 599, 724, 760
corrosion environment for boiling water reactors, 709, 745, 779
corrosion mechanism of zirconium alloys, 615, 644
corrosion of zircaloy-4, 351, 378, 400
corrosion resistant zirconium based alloys, 437, 483
crack propagation of zircaloy-4, 559
creep anisotropy, 469
damage in cold pilgering, 245
fatigue behavior of zircaloy and zirconium, 499, 549
fracture toughness, 135
heat treated pressure tubes, 183
hydride cracking, 35
hydrogen absorption, 80
hydrogen uptake, 62
in-reactor corrosion performance of zircaloy, 724, 745
iodine stress corrosion cracking of zircaloy-4, 559
irradiation effect on zircaloy-4, 521
irradiation growth in pressure tubes, 168
light water reactors, 19
microstructure analysis, 419
nodular corrosion behavior, 419
oxidation of zircaloy-4, 450, 687
oxide layers, microstructure, 579
pressure tubes, anisotropy, 202
pressure tubes, fabrication, 221
pressure tubes, fracture toughness, 135
pressure tubes, heat treated, 183
pressure tubes, irradiation growth, 168
scanning electron microscope techniques, 98
welds in zirconium, mitigation, 264
zircaloy corrosion behavior, 98, 285, 307, 328, 400
zirconium barrier fuel cladding, 3
zirconium, oxide films, 116
Nuclear electricity, 549
Nuclear fuel
 hydride cracking, 35
 hydrogen absorption, 80
 hydrogen uptake, 62
 light water reactors, 19
 zirconium barrier cladding, 3, 19
Nuclear materials
 anisotropy of tubes, 202
corrosion behavior of zircaloy, 285, 307, 328, 400, 760
corrosion environment for boiling water reactors, 709
corrosion mechanism of zirconium alloys, 615, 644, 724, 779
corrosion of zircaloy-4, 351, 378
 corrosion resistant zirconium based alloys, 437, 483
 crack propagation of zircaloy-4, 559
 creep anisotropy, 469
 damage in cold pilgering, 245
 fatigue behavior of zircaloy and zirconium, 499, 549
 fracture toughness, 135
 fuel cladding, 3
 heat treated pressure tubes, 183
 hydride cracking, 35
 hydrogen absorption, 80
 in-reactor corrosion performance of zircaloy, 724
 irradiation effect on zircaloy-4, 521
 irradiation growth in pressure tubes, 168
 light water reactors, 19
 microstructure analysis, 419
 nodular corrosion behavior, 419
 oxidation of zircaloy-4, 450, 687
oxide layers, microstructure, 579
pressure tubes, anisotropy, 202
pressure tubes, fabrication, 221
pressure tubes, fracture toughness, 135
pressure tubes, irradiation growth, 168
pressure tubes, heat treated, 183
scanning electron microscopy techniques, 98
stress, zircaloy tubes, 328
welds in zirconium, mitigation, 264
zircaloy corrosion and hydriding, 98, 307, 328
zirconium, oxide films, 116
Nuclear reaction analysis, 116
Nuclear reactors, 202
Nuclear submarines, fuel elements, 19
Neutron irradiation, 19, 35

O-P
Oxidation behavior of zircaloy-4, 351, 378, 450, 687
Oxide barrier, hydrogen uptake in zirconium, 62
Oxide growth, 579
Oxide layers, corrosion mechanism of zirconium alloys, 615, 663, 709, 779
Oxide layers, microstructure, 579
Oxide lithium hydroxide, 724
Oxide metal interface, 579
Oxide scale, 307
Oxides, 116
Oxygen, 221
Oxygen reactivity, 644
Pellet cladding interaction, 3, 19
Phosphorous, 221
Photoelectron spectroscopy, 116
Pilgering, cold, 245, 285
Porosity, 62, 116
Post irradiation examination, 183
Post weld heat treatment, 264
Power cycling effects, 549
Power reactors, 351
Precipitates, 328, 400, 521
Pressure tubes
 anisotropy of reactor creep, 202
 fracture toughness, 135
 hydrogen uptake in zircaloy, 62
 irradiation growth, 168, 183
Pressure tubes, cold pilgering, 245
Pressure tubes, corrosion resistant zircaloy, 285, 328
Pressure tubes, manufacturing and inspection process, 328
Pressure tubes, trace elements, 221
Pressure tubes, zirconium alloy welds, 264
Pressurization, repeated, 549
Pressurized water reactors
corrosion performance of zirconium alloys, 351, 483, 599, 709, 760, 779
fatigue behavior, 499, 521
fuel rods, cladding, 579, 760
in reactor uniform corrosion, 745
microstructure of oxide layers, 579
oxidation of intermetallic precipitates, 687
stress corrosion, 549
Processing creep, 724
Processing route, hydrogen absorption, 80

Q-R
Quenching, 285, 328
Q-value, 285
Radiation effects
 anisotropy of tubes, 202
corrosion behavior of zircaloy, 285, 307, 328, 400, 779
corrosion mechanism of zirconium alloys, 615, 644, 709, 760
corrosion of zircaloy-3, 599
corrosion of zircaloy-4, 351, 724
 crack propagation of zircaloy-4, 559
 creep anisotropy, 469
 damage in cold pilgering, 245
effect on microstructure of zircaloy-4, 521
fatigue behavior of zircaloy and zirconium, 499, 549
fracture toughness, pressure tubes, 135
fuel elements, boiling water reactors, 709
heat treated pressure tubes, 183
hydride cracking, 35
hydrogen absorption, 80
hydrogen uptake, 62
in-reactor corrosion of zircaloy, 724
irradiation growth in pressure tubes, 168
light water reactors, 19
lithium hydroxide and boric acid,
corrosion of zircaloy-4, 378, 724
microstructure and properties of
zirconium based alloys, 483
oxidation of zircaloy-4, 450, 687
oxide films on zirconium-niobium
alloys, 116
oxide layers, microstructure, 579
pressure tubes, anisotropy, 202
pressure tubes, fabrication, 221
pressure tubes, fracture toughness, 135
pressure tubes, heat treated, 183
pressure tubes, irradiation growth, 168
scanning electron microscope
techniques, 98
welds in zirconium, 264
zircaloy corrosion and hydriding, 98
zirconium barrier cladding, 3, 19
Reactor fuel, 3, 19
Recrystallized state, 663
Reduction in area, zircaloy tubing, 285
Repeated pressurization, 549
Residual stress, 264, 663

S–T

Scanning electron microscope techniques,
98, 116
Second phase particles, 599s
Secondary ion mass spectrometry, 62
Single crystals, 559
SoluteS, 400
Spectroscopy, 116
Steam corrosion, zircaloy oxidation, 80,
450
Stress corrosion, 3, 19, 328, 559
Stress gradients, 663
Surface boiling, 779
Surface defects, 245
Surveillance specimens, 183
Temperature, 168
Tensile properties, corrosion resistant
zirconium based alloys, 437, 483
Tensile strength, 183
Tensile stress, 663
Tensile stress, welds in zirconium
alloys, 264
Tetragonal zirconia, 663
Texture (materials), 202, 419
Thermal reactor, 183
Threshold stress intensity factor, 35
Tin content, zircaloy-4 cladding, 760
Tin, effect on corrosion resistance under
irradiation, 328
Tin, in zirconium alloys, 438
Tool design, 245
Trace elements, 221
Transmission electron microscopy, 307,
419, 579, 615, 687
Tube shells, 285
Tubes, 202
Twin boundaries, 559

U–X

Uniform corrosion
in reactor, 745, 760
irradiated zircaloy, 400
manufacturing and inspection process,
328
oxide layers, 579
under hot rolling and annealing
conditions, 307
zirconium based alloys, 437, 483, 615
Uniform protective oxide, 400
Water cooled nuclear reactors, 521
Water, in-reactor corrosion performance of
zircaloy, 724
Water rods, 285
Welds, in zirconium alloy components,
264, 400
X-ray absorption spectroscopy, 644
X-ray diffraction, 663
X-ray microanalysis, 98, 116
X-ray photoelectron spectroscopy, 644

Z

Zr-2.5Nb pressure tubes
anisotropy of in reactor creep, 202
corrosion, 378
fabrication, 221
fracture toughness, 135
heat treated, 183
hydrogen uptake, 62
irradiation growth, 168
oxide films, 116
Zircaloy corrosion and hydriding, 98
Zircaloy-4 cladding, 285, 307, 328, 378,
760
Zirco, 687, 760
Zirconium
anisotropy of pressure tubes, 202
cracking, 35
fatigue behavior, 499, 549
irradiation effect on microstructure, 521, 687
irradiation growth in pressure tubes, 168
light water reactors, 19
manufacturing and inspection process, 328
microstructure analysis, 419
nodular corrosion behavior, 419
oxidation in steam, 80
oxidation of zircaloy-4, 450, 687
oxide films, 116
oxide formation, 644, 663
oxide layers, 579
pressure tubes, anisotropy, 202
pressure tubes, heat treated, 183
scanning electron microscope techniques, 98
trace elements in pressure tubes, 221
welds, mitigation of harmful effects, 264
zirconium barrier cladding, 3, 19
Zirconium alloys
anisotropy of pressure tubes, 202
cladding tubes, 307, 328, 351, 599
corrosion behavior, 307, 351, 378, 400, 599, 724, 760
corrosion environment for boiling water reactors, 709, 724
corrosion mechanism of alloys, 615, 644, 663
corrosion resistant alloys, 437, 483
corrosion resistant tubing, 285
creep anisotropy, 559
ductile to brittle transition, 709
fatigue behavior, 499, 549
fracture toughness of pressure tubes, 135
fuel cladding, 3
fuel clad, 3
heat treated pressure tube, 183
irradiation effect on microstructure, 521, 687
irradiation growth in pressure tubes, 168
light water reactors, 19
manufacturing and inspection process, 328
microstructure analysis, 419
nodular corrosion behavior, 419
oxidation in steam, 80
oxidation of zircaloy-4, 450, 687
oxide films, 116
oxide formation, 644, 663
oxide layers, 579
pressure tubes, anisotropy, 202
pressure tubes, fracture toughness, 135
pressure tubes, heat treated, 183
scanning electron microscope techniques, 98
trace elements in pressure tubes, 221
welds, mitigation of harmful effects, 264
Zirconium barrier fuel cladding, 3
Zirconium niobium alloys, 116

Zirconium oxide surface chemistry, 378
Zirconium oxides, 62
Zirconium X-bar, 437
ZIRLO. See Zircaloy-4.