Subject Index

A

Absorption current, 47
a-c breakdown strength, as current function of rate of voltage application, 173
a-c breakdown tests, 175–177
apparatus, 180–183
circuit schematic, 181
current sensing element, 182
high-voltage variable frequency test, 181
source transformer, 182
voltage increase rate, 181
a-c bridge methods, high-voltage power dissipation, 200
see also Schering bridge; Transformer-ratio-arm bridge
a-c/d-c breakdown process, 192
a-c loss, 52
high voltage measurements, 157–216; see also Voltage breakdown tests
power expended, 58
Activation energy, 328
Active guard circuit, 121–122
Active probe techniques, electrostatic charge measurement, 479–482
calibration, 480
capacitance, 480
electrostatic fieldmeter, 479
reliability, 481
surface charge density, 481
Admittance meter, 94–95
Aging
definition, 377
rate and temperature, 523
see also Thermal degradation, aging and; Voltage aging
Allylic chlorine, structure, 421
Alumina, film specimen preparation, 197–198
Analysis of variance, 522
Anomalous breakdown process, 192
ANOVA, 522
Antioxidants, 326, 412
Arcing
high density, salt mist, 271
patterns, 265
surface failure, 262–263
Arrhenius equation, 328
Arrhenius law, 252
Arrhenius model, 522–524
ASTM D 149, 168–171, 175, 177, 182
ASTM D 257, 4, 7–8, 12, 17–18, 22, 24, 27–28, 226–227
ASTM D 374, 9–10
ASTM D 495, 264–267
ASTM D 618, 451
ASTM D 651, 373
ASTM D 669, 55
ASTM D 1000, 240
ASTM D 1289, 16
ASTM D 1371, 11, 21
ASTM D 1389, 171, 173
ASTM D 1531, 115, 117
ASTM D 1711, 282
ASTM D 2132, 287
ASTM D 2149, 55
ASTM D 2275, 254
ASTM D 2302, 288
ASTM D 2303, 288–291, 293–302
ASTM D 2304, 290
ASTM D 2307, 412
ASTM D 2520, 55, 62, 129–133, 135–137, 139
ASTM D 2578, 223
ASTM D 2679, 451, 482–483, 486
ASTM D 3380, 55
ASTM D 3426, 178–179, 184
ASTM D 3509, 480
ASTM D 3638, 282
ASTM D 3686, 283
ASTM D 3696, 284
ASTM D 3755, 177–178, 183
ASTM D 3909, 479
ASTM E 104, 452
Attenuation, resonant cavity methods, 140
Ayrton shunt, 21–22, 27–28

B

Beckman L-8 direct-indicating megohmmeter, 31
Beckman-L-9 megohmmeter with digital readout, 32
Bell-shaped curve. See Normal distribution
Benzene cell, 116
Benzyl acetate, NMR spectrum, 369
Bessel functions, 140
Bow tie treeing, 406
Breakdown
 impulse tests, 178–179
 probability, 526
 pulse tests, apparatus, 190–192
 specific field, 199
Breakdown voltage. See Voltage breakdown

C

Cage effect, 324
Calcium oxalate monohydrate, weight loss curve, 355
Capacitance, 56
 accuracy of determination, 121
 apparent increase, 120
 bridge, Gen Rad Type 1621, 94
 defined, 375
 edge, 108, 110–111
 inter-electrode, 111
 in vacuo, 118
 MKSA system, 537
Schering bridge, 202–204, 207, 209–210
specimen, 86
stray, 108–109
susceptance variation method, 103–106
vacuum, 111–113
Carbon deposits, 284–285
Carbon dioxide, liberation, rate variation, 410
Carbonization, 388
Carbon monoxide, liberation, rate variation, 410
Carbonyl, absorbence as function of irradiation energy, 402
Chain depolymerization, 315–316
Chain scission, 315, 321
 mechanical force, 335
 by ozone, 338
 polypropylene, 330–331
 radiolysis, 333
Characteristic breakdown stress, 502
Characteristic time-to-failure, 503
Charged particle bombardment, role in discharge degradation, 400–404
Charge effect hypothesis, 173–174
Charging current, 32–33
Chemical degradation, polymers, 336–338
Chemical shift, 368-369
Chi-square distribution, 509-510
Cleaning, plastic specimens, 11-12
Closed cavity system, 135
Coatings, non-linear resistance characteristic with voltage, 260
Coaxial electrode system, direct-current conductivity, 7
Coaxial line method, 54
Coaxial resonator system, 135
Cockroft-Walton heavy ion accelerator, 402
Cole-Cole plot, polymers, 377
Colloidal graphite electrodes, 15-16
Comparative tests, 513, 516-521
difference between population means divided by standard deviation, 517-518
Log-Normal distribution, 517
Normal distribution, 513, 516-517
randomization, 519-521
Weibull distribution, 517
Comparative tracking index, 283-284
Complex admittance, 80-81
Conduction current, variation with time, 246
Conductivity
surface, 242-243
see also d-c conductivity
Confidence bounds, 508-513
95% bounds, Weibull distribution, 514, 516
80% confidence intervals, Weibull distribution, 515, 519
mean, 508
Normal standard deviation, 509
t-values, 508
upper and lower probability points of chi-square distribution, 510
V-values, Weibull distribution, 511-512
W-values, Weibull distribution, 512
Contact hypothesis, 442-443
Contact potential, 445-446, 469
equation, 446
series, 442-444
Corona
degradation, polymers, 339
erosion, model, 411
life, effect of elongation, 396
surface, 221, 235-255, 260
Corona discharge, 162, 164-165, 170
charged particle bombardment, 400
degradation of polymer surface, 394-395
electron role, 404
frequency acceleration of discharge degradation, 406-407
microvoids, 370
modelling discharge degradation, 383-385
ozone role in discharge degradation, 395-400
processes and constituents of discharge degradation, 382-383
simulation, 384
see also Partial discharges
Corona-mechanical stress cracking, 394
Corona-stress cracking, 395
Corona test cell, 388
Corrosion liability factor, 240
Coulomb's law, 533, 538
Cr-Au counterelectrodes, 13-14
Creepage, distance versus operating voltage, 269
Crosslinking, 314, 325
mathematical descriptions, 332
by ozone, 338
polyethylene, 334
radiation, correlation with heats of polymerization, 333
Cu(Cu2O)-polymer, total pressure changes as function of exposure time, 423, 425
Cumulative density function, 498

D
Dacron, surface resistivity, 232–233
Dakin's equation, 408
d-c breakdown test, 177–178
apparatus, 183–184
bipolar supply, 184
circuit with polarity reversing switch, 184
d-c conductivity, 3–49
absorption current, 47
Ayrton shunt, 21–22
coaxial electrode system, 7
comparison method, 27–28
decrease in current with time, 18
defined, 5
direct reading instruments, 31–33
earth resistance measurements, 46–49
elastomer, 10–11
electrification, 17–18
electrode systems and specimens, 6–17
electrometer arrangement, 21
galvanometer method, 21–23
high voltage source, 47
humidity effect, 17
inorganic dielectric film specimens, 14
interfacial polarization, 17
measurement fundamentals, 19–20
Megger circuit, 45–46
paper specimens, 10
resistance measurements for specialized applications, 45–47
resistive voltage divider network, 19
space charge, 17
specimen charging effects, 47
specimen film thickness, 15
surface cleanliness, 11–12
tests at elevated temperatures, 16
thermally stimulated current measurements. See Thermally stimulated current measurements
tin foil electrodes, 12
units, 5
voltage rate-of-change method, 25–27
voltage ratio, 19
voltmeter-ammeter method, with D-C amplification, 23–24
voltmeter input resistance, 20
volume, 6–7
water-electrode-bath system, 7
Wheatstone bridge method, 28–30
d-c integrator, 464–467
Dehydrochlorination, polyvinyl chloride, 419–420
Density, polymer degradation, 374
Dendritic structures. See Trees
Depolymerization, arcing, 262–263
Depropagation, 317–318
Deproportion reaction, 324
Detroit Edison Tracking Test, 282
Dielectric constant. See Permittivity
Dielectric displacement, 535
Dielectric failure, defined, 176
Dielectric material capacitance, 56
capacitance, definition, 57
dissipation factor. See Dissipation factor
as-distributed parameter specimens, 59–64
impedance, 97
intrinsic breakdown strength, 160
low alternating-current loss, 52
lumped parameter specimens, 55–59
parallel equivalent circuit, 56
phasor diagram, 56
total current density vector, 57
transverse electromagnetic wave, 59–60
tubular specimen, 171
voltage distribution across, 249
Differential scanning calorimetry, 353, 411
Differential thermal analysis, 350–353, 411–412
analyzer, 351
endotherm, 352
exotherm, 352
variation in baseline with specific heat of sample, 352
Dilute solution viscometry, polymer degradation, 345–347
Dipole orientation, 36–37
Direct voltage breakdowns, 177
Dissipation factor, 57–59, 62, 77, 84, 86, 93
apparent increase, 120
change with different stabilizer concentrations, 379
change with exposure to water, 378
confocal optical resonator, 145
fluid displacement cell, 118
free space methods, 143
as function of IR absorbence for polypropylene, 383
Michelson interferometer, 150
micrometer-electrode system, 115
open cavity resonator, 141
optical methods, using laser source, 152
parallel T-network, 98–99
polyethylene
 discharge effect, 399
 ozone effect, 400
polymers, 375
Q-meter method, 101
resonant cavity methods, 139
Schering bridge, 202, 204, 206–207, 209–210
semi-confocal optical cavity resonator, 145–147
silicone fluids, 117
susceptance variation method, 107
transformer-ratio-arm bridge, 212–213, 215
transmission line method, 133
Distributed network, lumped circuit equivalent, 259
Dry arc resistance, 263–268
arcing patterns, 265
comparison of rod and strip electrodes, 266
high current arc ignition test, 267
high-voltage, low-current tracking test, 267
stainless-steel strip electrodes, 265
tungsten rode electrodes, 264
Du Pont dynamic mechanical analyzer, 356
Dynamic electrical behavior, polymer degradation, 374–377
Dynamic mechanical analysis, polymer degradation, 354–356

E
Earth resistivity measurements, 48
Edge correction, 110
n-Eicosane, degradation products, 384
Elastomer, thickness of specimen, 10–11
Electrical behavior, dynamic, polymer degradation, 374–377
Electrical tree, 338–339
Electrical units, systems of units, 531–533
Electric breakdown, model, 384–385

Electric field
- electrostatic fieldmeter, 471
- Gaussian CGS system, 534
- gradient, 446
- relationship with surface charge density, 447
- vectors, 60

Electrode
- considerations in dielectric strength measurement, 174
- contact pressure, 12
- counter guard, mask design, 119
- direct-current conductivity, 6–17
disk or circular metallic, 7–8
disk or circular metal, 7–8
edget effects, 10
effective area, 8
electric field enhancement as function of radial distance of HV cylindrical electrode, 167
equipotential lines between two electrodes, 166

flux line
distribution between, 109
fringing, 8
foil, 171
gold-evaporated, 38–39

guarded parallel-plane, flux line distribution, 110

hemispherical, 171
high conductivity silver paint, 12–13
large slab dielectric specimens, 15–16
metallic film, 13
non-parallelism, 9
penetration or reduction of thickness, 10
presser foot pressures, 9–10
selection of materials, 6

spherical, 162–163
stainless-steel strip, 265
tests at elevated strip, 265
tests at elevated temperatures, 16
thickness determination, 15
tin foil, 12
tungsten rod, 264
volume conductivity, 6–7

Electrode system
- composite, 169–170
equal diameter, 169
intrinsic breakdown strength, 165–172
breakdown voltage, 165–166
corona discharges, 165, 170
embedded electrodes, 170
heavy wall insulating materials, 171–172
laminated materials, 171–172
pre-breakdown mechanisms, 169
sheet and roll form materials, 171–173
tubular dielectric specimen, 171
McKeown, 164
measurement for dielectric specimens, 119–120
recessed, 160
spherical HV electrode, 162–164
unequal diameter, 168
Electrolytic corrosion, surface, 240
Electromagnetic wave propagation, modes in waveguides, 61–62
Electrometer, 196, 453–454
drift correction procedure, 486

Electron
- role in discharge degradation, 404
total density, 34
Electron spin resonance, polymer degradation, 364–367
electron energy splitting, 366
energy difference, 364
microwave radiation frequency, 365
spectra, 365
spectrometer, 367
trees, 405
triplet absorption signal, 366
Electrophotography, 469
Electroscope method, 472–473
Electrostatic charge
amount of charge transferred by contact charging, 448
applications, 441
charge generation due to sliding contact, 449
contact hypothesis, 442–443
contact potential, 445–446
series, 442–444
electric field gradient, 446
finite time constant, 445
measurements
d-c integrator, 464–467
electrometers, 453–454
electrostatic modulators, 460–463
electrostatic voltage follower, 456–458
feedback electrostatic fieldmeter, 458–460
field intensity methods, 473–482
field mill electrostatic fieldmeters, 452, 454–456
methods, 472–473
oscillator, 462
phase-sensitive demodulator, 462, 464
probe transducer characteristics, 467, 469–470
radioactive fieldmeters, 454
reliability, 481
signal amplifier, 462
slow drift, 453–454
test specimens, 450–452
problems created by, 440
proportionality constant, 445
relationship between surface charge density and electric field, 447
surface charge
decay half life and relative humidity, 451
density as function of applied pressure, 448–449
density values, 447–448
distribution, 444
facing grounded metallic plane, 447
necessary for development of hazardous sparks, 449
thermodynamic equilibrium, 445
topography of materials, 448
triboelectric series, 441–442
triboelectrification, 441
tunnelling, 444
Electrostatic fieldmeter
with active probe, 479
notes, 471–472
Electrostatic modulators, 460–463
Electrostatic voltage follower, 456–458
circuit diagram, 457
d-c integrator, 464–467
drift measurements, 469
electrostatic modulator, 460–463
notes, 470
oscillator, 462
phase-sensitive demodulator, 462, 464
probe-to-specimen surface spacing, 469
probe transducer, 467, 469–470
signal amplified, 462
Endotherm, 352
Epoxy
evaluation of gaseous products, 411
flashover values, 282
thermal degradation, 421–422
Epoxy-mica composite

degradation mechanism, 422
weight changes, exposure to sur-
face discharges, 385

Equivalence hypothesis, 526–527

Erosion, partial discharges, 385–
388
polyethylene, 385–387
proportionality constants, 387
weight changes, 385

Erosion drop test, 282–286
comparative tracking index, 283–
284
drops to cause propagation of car-
bon path, 285
drops to initiate carbon deposits
versus voltage, 285
electrode arrangement, 283
proof tracing index, 284

Erosion tests, 286–309
cumulative current, 302–309
average leakage current versus
time, 304
charge transfer versus time in
salt fog, 305
computerized data acquisition,
304
electrode assembly, 303
erosion versus charge transfer,
303
failure mechanisms, salt fog
test, 306–307
integrated scintillation current,
306, 308
surge currents, 308
differential wet tracking resis-
tance, 288
dust-and-fog tracking and erosion
resistance, 287–288
eroded volume, 295, 298
versus time, 295
versus voltage, 294
erosion depth, 295, 297
versus time, 294

versus voltage, 293
liquid-contaminant, inclined-
plane tracking and erosion
test, 288
severe ambient conditions, 288–
289
specimen and electrode assembly,
289
tracking-endurance test, 287
track-resistant materials, 291
types, 286–287

see also Erosion drop test; Track-
ing

Ester formation, polyethylene, 418
Ethylene propylene rubber, erosion
versus charge transfer, 302–
303

Exotherm, 352
Experimental designs, 521–522

F

Fabry-Pérot interferometer, 54, 143
Factorial design, 521–522
Faraday cage methods, 472, 482–
486
block diagram, 482
cage design, 483
capacitance, 485
drift correction procedure, 486
electrodes, 483
grid system, 483–484
Maxwell’s equation, 484
particle charge decay, 484
schematic, 483
voltage between electrodes, 485

Feedback electrostatic fieldmeter,
458–460

Field intensity methods
active probe techniques, 479–482
passive probe techniques, 473–
479

Field mill electrostatic fieldmeters,
452, 454–456
Finite time constant, 445
Flashover
- epoxy strips, 282
- exposed insulators in deserts, 281
- high density, salt mist, 271
- wet contaminated surfaces, 269–280
- apparatus, 278
- contaminated insulation after long-term outdoor exposure to voltage, 279–282
- minimum, 275, 278
- salt fog chamber, 282
- salt fog versus salt content, 279
- weathered epoxy strips, 280, 282
Flashover voltage
- dependence on dielectric constant, 250
- effect of salt concentration and temperature, 275
- effects of electrode geometry, 250–251
- as function of pressure and electrode spacing, 252
- limiting, versus heat of formation, 274
- minimum, change versus thickness of ice, 281
- particles on insulating surfaces, 261
- polystyrene, 279
- post insulators, 261
- silica glass, 277
- Teflon, 277
Fluid displacement, 115–118
Force vector, 533
Fourier Transform IR, 363
Four-terminal method, earth resistivity measurement, 49
Free space methods, 142
Frequency acceleration, discharge degradation, 406–407
Frequency response analyzer scheme, 80–81
Fringing effects, 108–109
Fungus growth
- effect on electrical characteristics of insulating materials, 236
- surface failure measurements, 234–240

G
Galvanometer method, 21–23
- comparison method, 27–28
Gas chromatography
- n-eicosane degradation products, 384
- gas mixtures, 390, 392
- polymer degradation, 356–358
- polypropylene, 392
Gas chromatography/mass spectroscopy
- polymer degradation, 361
- pyrolysis products, 409
Gas evolution, partial discharges, 388–393
- discharge degradation products, 392
- gas chromatography, 390, 392
- gas product, polymers exposed to arcing in inert atmosphere, 391
- hydrogen evolution rate in closed cell, 389
- proportionality constant dependence on total discharge energy, 389–390
- SF₆ exposed to arc discharge, 391
Gas-insulated spacer cable, 262
Gas-liquid chromatography, 357
Gas-solid chromatography, 357
Gaussian CGS system, 532–536
- conversion factors with SI system, 541–542
dielectric displacement, 535
Gaussian CGS system (continued)
dimensions and units, 536
electric field, 534
electric flux density vectors, 535
force vector, 533
Maxwell electromagnetic field equations, 535
relationship with MKSA system, 537–538
Gaussian distribution. See Normal distribution
Gel permeation chromatography, polymer degradation, 347–350

bimodal curve, 348
chromatography, 348–349
high temperature, 349–350
polyethylene, 413–415
Glass composition, influence on surface resistivity, 243–244
Glass-polymer, total pressure changes as function of exposure time, 423, 425
Glass transition temperature definition, 350
effect of structural factors, 351
Glynne bridge, 212
Guard electrodes, 119
Guard gap correction, 112

H
Hartshorn and Ward resonance technique, 54
Heaviside-Lorentz system. See Gaussian CGS system
Heavy wall insulating materials, 171–172
Hetratetracontane, thermal-oxidative degradation, 416–417
High Current Arc Ignition Test, 267
High performance liquid chromatography, polymer degradation, 361–362
High Voltage Arc Tracking Rate Index Test, 267
Histogram, 492
Humidity
effects on direct-current conductivity measurements, 17
surface conductivity and, 444
see also Relative humidity
Hydrogen, evolution rate in closed cell, 389
Hydrogen peroxide, deactivation, 326–327
Hydroperoxides, 323

I
IEC Publication 93, 4
IEC Publication 112, 282–286
IEC Publication 250, 55
IEC Publication 426, 240–241
IEC Publication 587, 288–289, 299
IEEE Standard 101–1972, 524
Impedance
dielectric materials, 97
load, 130–131
specimen-air interface, 130
Impulse breakdown tests, 178–179
Impulse generators, 184–190
coaxial line impedance, 188
multi-stage, 185, 189
oscillographic method, 187
peak value of voltage wave, 188
single-stage, 186
small capacitance specimens, 189–190
sphere gaps, 187
stray inductance, 186–187
virtual front time, 185, 187, 189–190
voltage waveform across specimen, 187
Impulse strength, 173–174
Index of refraction, 61
 confocal optical resonator, 144–145
Michelson interferometer, 149
optical methods, using laser source, 151
Infrared spectroscopy
 absorption as function of charge, 401
high resolution, oxidized groups on polymers, 398
polyethylene, 415
polymer degradation, 362–364
pyrolyzing silica-polytetrafluoroethylene, 411
Inorganic dielectric films
 breakdown strength, 196
 thickness, 14
Insulation
 Dakin's equation for life of, 408
 evaluation. See Statistical methods for evaluation
leakage current, 45
resistance, 4, 20, 26–27, 32–33, 45
 defined, 225
 as function of time, 25
 measurement, 225–226
 parallel equivalent, 22
surfaces, charging, 253
Insulator post, 261
Interfacial failure, 221
Interfacial polarization, 17
Interference optics, 142
Intermolecular hydrogen abstraction, polyethylene, 415
Inverse power model, 524–526
Isoprobe electrostatic voltmeter, 462–464, 470

K

Karl Fischer reagent, 372
Kirchoff's equation, 19
Kirchoff's edge correction, 106

L

Lambert-Beer law, 330
Laminated materials, 171–172
Leakage current, 32–33, 45
 polytetrafluoroethylene, 242–244, 246
 versus time, PMMA, 304
 versus voltage, 272
LED/photoconductor high voltage d–c integrator-amplifier, 466–468
Lichtenberg figures, 255, 472
Life prediction techniques, 522–527
 Arrhenius model, 522–524
 equivalence hypothesis, 526–527
 inverse power model, 524–526
Life testing, frequency acceleration, 406
Light scattering, 343–345
Liquid chromatography, high performance, polymer degradation, 361–362
Liquid-liquid chromatography, 361
Liquid-solid chromatography, 362
Log-Normal distribution, 492–493, 499–501
 commercial probability paper, 501
 comparative tests, 517
 confidence bounds, 510–511
 logarithmic mean, 500
 logarithmic standard deviation, 500
 median, 500
 parameter distribution, 500–501
Long chain branching, polyethylene, 416
Loss tangent. See Dissipation factor
Lumped parameter measurements, electrode systems, 108–122
 completely shielded and guarded electrode system, 111–112
dissipation factor, 115
 edge capacitance, 108, 110–111
Lumped parameter measurements, electrode systems (continued)
equivalent circuit of two-terminal cell, 109
fluid displacement, 115–118
flux line distribution, 109–110
fringing effects, 108–109
guard gap correction, 112
inter-electrode capacitance, 111
micrometer-electrode system, 114
ratio of electrode thickness to guard gap as function of parameter A, 112–113
silicone fluids, 117
vacuum capacitance, 112–113

M
Magnetic field vectors, 60
Mark-Houwink-Sakurada constants, 348
Mark-Houwink-Sakurada equation, 340, 347
Marx generator, 185, 193
Mass spectrometry, polymer degradation, 359–360
dilute solution viscometry, 345–347
gel permeation chromatography, 347–350
number-average molecular weight, 341–343
weight-average molecular weight, 343–345

Mechanical analysis, dynamic, polymer degradation, 354–356
Mechanochemical degradation, polymers, 335–336
Median, 500
Meggir circuit, 45–47
Membrane osmometry, 341–343
Metallic evaporated films, 163

3-Methyl-4-phenyl-2-butanoine, 359–360
Michelson interferometer, 147–150
Microscope, polymer degradation, 370–372
Microscopy, polymer degradation, 370–372
MKSA system, 532, 536–539
capacitance, 537
Coulomb’s law, 538
dimensions and units, 539
farad, 537
force, 537
Maxwell’s electromagnetic field equations, 538
permittivity, 536–537
proportionality constant, 536
power loss relationship, 537
relationship with Gaussian CGS system, 537–538
Modulus, 354–355
Molecular weight methods, polymer degradation, 340–350
dilute solution viscometry, 345–347
gel permeation chromatography, 347–350
number-average molecular weight, 341–343
weight-average molecular weight, 343–345
Multiple internal reflectance, 363
dilute solution viscometry, 345–347
gel permeation chromatography, 347–350
number-average molecular weight, 341–343
weight-average molecular weight, 343–345
Mylar, breakdown strength, 194

N
Nested design, 522
Newton’s second law of motion, 533
Nitrogen dioxide, polymer degradation, 337
Normal distribution, 492–499
commercial probability paper, 497
comparative tests, 513, 516–517
cumulative density function, 498
equation, 494
mean, 494–495
parameter determination, 496–498
probabilities, 498–499
probability density function, 498
standard deviation, 495, 509
variance, 495–496
Norrish reactions, 329
NRC/Guideline current compar­
tor bridge, 214–215
Nuclear magnetic resonance, poly­
mer degradation, 367–370
chemical shift values, 368–369
ergy difference, 368
radiation frequency, 368
triplet signal, 370
vicinal protons, 370
Number-average molecular weight,
polymer degradation, 341–343
Nyquist frequency, 67

O
Ohm’s Law, 4
Oil-modified, phenolic varnish coated on solid glass surface resistivity, 239
Open cavity resonator, 135, 139–140
Open resonator method, 54
Optical cavity resonators, 143
Optical methods, 142–152
confocal optical resonator, 143–145
dissipation factor, 152
free space methods, 142
index of refraction, 151
interference optics, 142
matching coefficient, 146–147
Michelson interferometer, 147–150
optical cavity resonators, 143
quasi-optical measurement tech­
niques, 142–143
semi-confocal optical cavity re­
sonator, 145–147
submillimeter wave methods, 147
using laser sources, 150–152
Optical resonator system, 135
Oscillator, 462
Osmotic pressure, 343
Oxalic acid, 393, 397
Oxidative degradation, polymers,
322–327
antioxidants, 326
cage effect, 324
crosslinking, 325
disproportion reaction, 324
hydroperoxides, 322–323
kinetics, 325
metal catalysts, 325–327
oxygen uptake rate, 325
polymer radical formation, 322
propagation reactions, 323
Oxidized silicon slice substrate, with evaporated counter-electrodes, 13–14
Oxygen, absorption, rate variation, 410
Ozone
polymer degradation, 338
role in discharge degradation, 395–400

P
Paper-phenolic laminate
effect of electrode geometry on flashover voltage, 250–251
surface resistivity, 231–232
Parallel T-network, 98–99
Partial discharges
chemical degradation in treeing,
404–406
critical discharge level, 381
detection, 380–381
Partial discharges (continued)
erosion by, 385–388
gas evolution, 388–393
magnitude and repetition rate, 381
modelling discharge degradation, 383–385
processes and constituents of discharge degradation, 382–383
voltage at which void will break down, 380
weight changes and exposure to surface discharges, 385
see also Corona dischargePaschen minimum, 251
Paschen’s law, 405
Passive probe techniques, electrostatic charge measurement, 473–479
capacitance, 474–475
connection diagram, 476
Devin and Reynolds design, 474
equivalent circuit, 474–475
high resolution, 477
microprobe, 478–479
surface charge density, 475–476
Peroxide curing, polyethylene, 418
Permeability, permittivity and, 531–532
Permittivity, 52–53, 57, 133, 141, 150
complex, 125, 375
definition, 56
dependence of flashover voltage, 250
fluid displacement cell, 116
free space methods, 142
in vacuo, 60
measurement methods
active guard circuit, 121–122
admittance meter, 94–95
admittance of specimen, 80–81
electrode systems for lumped parameter measurements, 108–122
frequency response analyzer scheme, 80–81
high frequency, 122–152
intermediate frequencies, 81–98
low frequency, 65–81
Nyquist frequency, 67
optical methods. See Optical methods
parallel T, 98–99
Q-meter method, 99–102
R-C bridge measurement techniques, 81–82
resonant cavity methods. See Resonant cavity methods
RLC meter, 96–98
Schering bridge. See Schering bridge
square voltage pulse, 72–73
step response system. See Step response system
step voltage, 122–123
susceptance variation method, 102–108
Thompson-Harris low frequency bridge, 75–79
time domain methods, 122–126; see also Time domain reflectometry
total reflectance, 127
upper and high frequency, 98–108
various frequency ranges, 64
voltage step, 65
see also Lumped parameter measurements, electrode systems
MKSA system, 536–537
optical methods, using laser source, 151
optical or high frequency value, 124
permeability and, 531–532
polyethylene, 117
discharge effect, 399
ozone effect, 400
polymers, 375
real and imaginary values, 61, 159
relative
applied voltage step, 65–68
complex, 60
error analysis, 71–72
as function of frequencies, 71
real, 139, 141
resonant cavity methods, 139
semi-confocal optical cavity resonator, 146
static value, 124
systems of units, 531
Phase constant, resonant cavity methods, 140
Phase distance, confocal optical resonator, 144–145
Phase-sensitive demodulator, 462, 464
Phase shift, Michelson interferometer, 149
Photodissociation, rate, 328
Photolysis, polymers, 328–333
activation energy, 328
mathematical descriptions, 332–333
Norrish reactions, 329
polyethylene, 329–330
polypropylene, 330–331
polyvinyl chloride, 331–332
Photostimulated detrapping current techniques, 41
Physical constants, values, 544
Plastic insulated wire, surface resistance, 236–237
Poleck-type universal capacitance and tan δ bridge, 208–210
Polyamide, dissipation factor change with exposure to water, 378
Polydispersity, definition, 341
Polyester glass-mat laminate, inclined plane tracking test, 299
Polyethylene
behavior in oxygen-containing atmosphere, 389–390
bimodal GPC curve, heat-aged, 348
change in molecular weight distribution with heat, 413–415
dielectric breakdown at elevated temperatures, 412–413
dissipation factor, 118
change with different stabilizer concentrations, 379
discharge effect, 399
ozone effect, 400
dissipation of surface charge, 444
effect of elongation on corona life, 396
effect of heating time on intrinsic viscosity, 413
effect of ion implantation on molecular weight, 403
electrical properties, 380
erosion, applied voltage and, 385, 387
ester formation, 418
intermolecular hydrogen abstraction, 415
IR spectra, 363
liquid droplets or bumps, 393–394
long chain branching, 416
low density
change in intrinsic viscosity when heated, 416–417
corona action versus ozone action, 396–398
microscopy, 370–371
multiple internal reflectance, 400–401
partial discharge, 381, 385
peroxide curing, 418
permittivity, 117, 399–400
photolysis, 329–330
radiolysis, 334
random initiation rate, 316–317
structure, 319
Polyethylene (continued)
surface charge necessary for clinging, 449–450
surface current versus voltage, 245
surface resistivity, 228, 235
test cell for exposure to corona and ozone, 398
thermal and thermal-oxidative degradation, 319, 412–418
nitrogen atmosphere, 413
treeing, 405–406
water content, 373
weight loss as function of temperature, 320
Polyimide
frequency acceleration characteristics, 407
thermal oxidation, 410
Polymer degradation, 340–377
carbonyl absorbance as function of irradiation energy, 402
chain depolymerization, 315–316
charged particle bombardment role in discharge degradation, 400–404
chemical degradation mechanisms, 314–315
chemical polymer degradation, 336–338
corona degradation, 339
crosslinking, 314
mechanochemical degradation, 335–336
radiative degradation, 322–335
synergistic effects, 339–340
thermal degradation, 315–322
voltage aging, 338–339
condensed-phase degradation products, 393–394
corona-mechanical stress cracking, 394
corona-stress cracking, 395

562 ELECTRICAL PROPERTIES, PART B
crystalline melting point, 350
density, 374
dynamic electrical behavior, 374–377
effect of ion implantation on molecular weight, 403
electrical degradation, 377–379
electron role in discharge degradation, 404
intrinsic viscosity as function of temperature, 336
IR absorption as function of charge, 401
microscopy, 370–372
molecular weight decrease with time under shear degradation, 335
methods, 340–350
oxalic acid, 393
ozone role in discharge degradation, 395–400
spectroscopic techniques, 362–370
temperature dependence of modulus, 355
tensile strength, 373–374
thermal analysis, 350–356
thermal degradation, 382–383
volatiles analysis, 356–362
water analysis, 372–373
see also Partial discharges; Thermal degradation, aging and,

Polymers
Cole-Cole plot, 377
conductivity proportional to dose rate of electron bombardment, 404
dissipation factor, 375
loss factors, 376
more than one phase, 378
permittivity, 375
power lost in capacitor, 375
thermal-oxidative stability, effect of metals, 422–426
traps, 33
Polymethyl methacrylate
average leaking current versus time, 304
radiolysis products, 334–335
surface charge necessary for clinging, 450
surface resistivity, 234–235
Polyolefin, gel permeation chromatography, 349–350
Polypropylene
dissipation factor as function of IR absorbance, 383
GC chromatogram, 392
isotactic, thermal-oxidative degradation, 423
photolysis, 330–331
structure, 319
tertiary carbon structures, 421
thermal degradation, 319
thermal oxidative degradation, 422
effect of transition metal chelates, 424–426
weight loss as function of temperature, 320
Polystyrene
degradation by NO₂, 337
flashover voltage, 279
surface resistivity, 235
thin film specimen, 197–198
Polytetrafluoroethylene
contact angle of water, 223
dielectric life, 395
effect of elongation on corona life, 396
leakage currents, 242–244, 246
surface conductivity, 242
surface current versus voltage, 245
surface resistivity, 234–235
thermal degradation, 321–322
water adsorption, 242
Polyurethane, dissipation factor change with exposure to water, 378
Polyvinyl chloride
dechlorination, 321
frequency acceleration characteristics, 407
mass spectrometry of pyrolysis products, 419
photolysis, 331–332
relation between weight loss and degradation time at different HCl contents, 421
thermal and thermal-oxidative degradation, 319–321, 418–421
Population, statistical definition, 491
Post insulators, 261
Power absorption coefficient, 151
Power dissipation, a-c bridge, 200
Power loss relationship, 537
Probability density function, 498
Probability of failure, 503
Probe transducer, characteristics, 467, 469–470
Proof tracking index, 284
Propagation, 323
constant, shorted coaxial line method, 129
factor, complex, 60
Proportionality constant
dependence on total discharge energy, 389–390
electrostatic charge, 445
erosion-energy relation, 387
MKSA system, 536
Pulse breakdown tests, apparatus, 190–192
Purple plague, 241
Pyrolysis gas chromatography, 358, 420
Pyrolysis products, 409

Q

Q-meter, 54
with fluid displacement cell, 117
Q-meter method, 99–102
automated, 101–102
circuit, 100
dissipation factor, 101
Q-value, 100
Quality factor, 137–138
Quartz glass, surface conductivity, 242–243

R
Radiative degradation, polymers, 327–335
photolysis, 328–333
radiolysis, 333–335
Radioactive fieldmeters, 454
Radiolysis, polymers, 333–335
correlation between crosslinking and degradation with heats of polymerization, 333
PMMA, 334–335
polyethylene, 334
Randomization, 519–521
Random numbers, 520
R-C bridge measurement techniques, 81–83
Rectangular microwave cavity, 135–136
Re-entrant cavity system, 135
Reflection coefficient, 124
Reflectometry, time domain. See Time domain reflectometry
Relative humidity
charge decay half life and, 451
effect on dielectric life, 397
surface resistivity, 227–234
Relaxation time, dipole orientation process, 37
Resistance, volume, 28
Resistive voltage divider network, 19
Resonant cavity methods, 133–141
attenuation, 140
Bessel functions, 140
closed cavity system, 135
coaxial resonator system, 135
dissipation factor, 139
frequency
limit, 135
pulling, 137
half-power bandwidth of empty resonant cavity, 137
instantaneous field configurations, 134
microwave system, 137–138
open cavity resonator, 135, 139–140
optical cavity resonators, 143
optical resonator system, 135
permittivity, 139
phase constant, 140
quality factor, 137–138
rectangular microwave cavity, 135–136
re-entrant cavity system, 135
resonant cavity specimen holder, 136–137
resonant frequency, 135
sensitivity, 134–135
voltage standing wave ratio, 136
Resonant rise method. See Q-meter method
RLC meter, Gen Rad Type 1689 precision dibridge, 96–98
Rogowski-Rengier profile, 162
Ryder constant, 540

S
Sample, statistical definition, 491
Sandwich French cell, indirect exposure to corona, 254
Scanning electron microscopy, 371
Schering bridge, 53, 82, 200–208
arrangements
parallel substitution measurements, 85–86
substitution measurements, 84–85
balance condition, 202
balance relation, 83–84
circuit, 83
connection error, 86
dissipation factor, 202, 204, 206–207, 209–210
with driven active shield, 207–208
elementary arrangement, 201
General Radio Type 716C, 87
with guard circuit, 206–207
loss factor, 375
modified, 74–75, 208–210
dissipation factor up to 10, 204–205
Poleck-type universal capacitance and tan δ bridge, 208–210
RC-bridge arrangements, 202–203
screen technique for balancing guard circuit, 207–208
spark gaps, 201
specimen capacitance, 86, 202–204, 207, 209–210
with stray capacitances to ground, 206
Tettex AG precision capacitance and tan δ bridge, 210–211
vibration galvanometers, 201–202
Wagner’s earth method, 206
see also Transformer ratio arm bridge
Scintillation current, 276
defined, 282
evolved gas under, 298, 301
high density, salt mist, 271
integrated current, 306, 308
occurrence, 305
range of voltage to produce, 290
Self-generating voltmeter, 455
Self-healing effects, 194
Semi-confocal optical cavity resonator, 145–147
7th Power Law, 524
Shorted coaxial line method, 129
Short-time test, 175, 177
Signal amplifier, 462
Silica glass, flashover voltage, 277
Silica-polytetrafluoroethylene, pyrolyzing, 411
Silicon carbide coatings, 260
Silicone fluids, fluid displacement cell, 117
Silicone glass laminate, surface resistivity, 231–232
Silli-Putty, 354
Silver migration, surface, 241
Silver paint, high conductivity, 12
SI system, 532, 539–540
displacement cell, 117
conversion factors with Gaussian CGS system, 541–542
derived units, 540
prefixes, 540
Size-exclusion chromatography, polymer degradation, 347–350
Slow-rate-of-rise test, 175–176, 181
Soil resistivity, 48
Solid-state high frequency inverter, schematic, 465
Solvent etching, 371
Space charge, 17
Spacers, 261–262
Spark gaps, 201
Specific breakdown field, 199
Specific inductive capacity. See Permittivity
Specimen, statistical definition, 491
Spectroscopic techniques, polymer degradation, 362–370
electron spin resonance, 364–367
infrared, 362–364
nuclear magnetic resonance, 367–370
Spherulites, 378
Square voltage pulse, 72–73
Standard deviation, 494
definition, 495
logarithmic, 500
Statistical methods for evaluation
comparative tests, 513, 516–521
confidence bounds, 508–513
elementary principles, 491–494
experimental designs, 521–522
histogram, dielectric strength
data, 492
history, 490
life prediction techniques, 522–527
purposes, 490–491
scatter, 491
types of distribution and uses, 492–493
see also specific types of distribution
Step-by-step test, 175–176, 181–182
Step response system, 68
characteristic, 3% carbon black
filled polyethylene, 70
charging current, 70
control unit timing sequence, 69–70
discharging current, Fourier
transformation, 71
Stress parameter, 502
Student's t-test, 513, 516–517
Submillimeter wave methods, 147
Sulfur dioxide, polymer degradation, 337–338
Sulfur hexafluoride, contaminated, variation in composition, exposure to arc discharge, 390–391
Superposed voltage tests, apparatus, 191–194
a-c, 192
a-c/d-c, 192
additive and subtractive impulses on d-c bias level, 194
d-c, 191–193
impulse on d-c tests, 193
Surface
adsorption of water vapor, 241
balance of surface energies, 222
charges, 252–253
cleaning, 225
conductivity, 242–243
contact angle, 22
contaminants, 222
corona, 221, 253–255, 260
defined, 221
wetting tension, 223
Surface current-voltage curves, 245
Surface discharge, 255–256, 379–382
degradation from, 254
electrode geometry, 255
elimination, 260
oil-impregnated paper or pressboard, 256–257
patterns, 255
Surface failure measurements
biological surface contamination, 234–240
contaminant, 224
distribution of moisture across dimension perpendicular to faces exposed, 230–231
dry surface flashover and dry tracking, 248–268
dry arc resistance, 263–268
failure under arcing, 262–263
influence of pressure and vacuum, 251–252
spacers, 261–262
surface corona, 253–255
surface discharge, 255–256
theoretical considerations of surface charges, 252–253
tracking, 256–261
see also Flashover voltage
electrolytic corrosion and silver migration, 240–241
fungicide, 234–235
imperfections, 221
insulation resistance, surface resistance, and surface resistivity, 225–227
interfacial failure, 221
oily coating, 223
purple plague, 241
space-charge controlled current-voltage relationship, 246
surface resistivity, high relative humidity, 227–234
theoretical considerations, 241–247
total enclosure, 225
variation of conduction current with time, 246
wet contaminated surfaces, 268–309
creepage distance, 269
erosion drop test, 282–286
erosion tests. See Erosion tests
tracking, 282–286
weathering and contamination of insulation surfaces, 269–270

see also Flashover; Surface resistance; Surface resistivity
Surface resistance
engineering significance, 247–248
hook-up wire, 236, 238–239
measurement, 226–227
plastic insulated wire, 236–237
Surface resistivity
effect of contamination, 234–235
high relative humidity, 227–234
glass after 1 day at 23°C, 244
glass as temperature is reduced, 228–229
interfacial resistance, 232–233
materials that absorb relatively large amounts of water, 230
polarization, 227
polyethylene, 228, 235
versus time, 228–230
influence of glass composition, 243–244
measurement, 226–227
oil-modified, phenolic varnish coated on solid glass, 239
polymethyl methacrylate, 234–235
polystyrene, 235
polytetrafluoroethylene, 234–235
Surface tracking, 174
Susceptance variation method, 102–108
capacitance, 103–106
dissipation factor, 107
edge correction, 106
equivalent shunt conductance, 104
modified circuit, 106
potential difference, 103
resonance curve, 105
resonator, 107–108
simplified equivalent circuit, 102–103
Synergistic effects, polymers, 339–340
Systems of units
CGS electromagnetic system, 531
CGS electrostatic system, 531
conversions between, 539–541
electrical units, 531–533
Gaussian CGS system, 532–536
history, 530–531
MKSA system, 532, 536–539
rationalized, 533
SI system, 532, 539–540
units and equivalents, 543–544
unrationalized, 533

T
Teflon
flashover voltage, 277
peak scintillation current, 276
Teflon (continued)
 surface conductivity, 242–243
 surface current-voltage curves, 245
Tensile strength, polymers, 373–374
Test chamber, 174–175
Tetramethylsilane, NMR chemical shifts, 368
Tettex AG precision capacitance and tan δ bridge, 210–211
Theovibron dynamic viscoelastometer, 355–356
Thermal analysis, polymer degradation, 350–356
differential, 350–353
differential scanning calorimetry, 353
dynamic mechanical analysis, 354–356
glass transition temperature, 350–351
thermogravimetric analysis, 353–354
Thermal conductivity detector, gas chromatography, 358
Thermal degradation, 382–383
epoxy resins, 421–422
Thermal degradation aging and, 408–426
 Dakin’s equation for life of insulation, 408
differential scanning calorimetry, 411
differential thermal analysis, 411–412
polyethylene, 412
polyvinyl chloride, 418
thermal oxidative degradation. See Thermal oxidative degradation
 thermogravimetric analysis, 411–412
volatiles analysis, 408–411
polymers, 315–322
chain depolymerization, 315–316
degree of polymerization as function of time, 318
depropagation, 317–318
kinetics, 315–319
polyethylene, 319
polypropylene, 319
polytetrafluoroethylene, 321–322
polyvinyl chloride, 319
random initiation rate, 316–317
products, 409
Thermally stimulated current measurements, 33–45
characterizing origin of charge traps, 33
current density behavior resulting from dipole movements, 37
densities of conduction and trapped electrons, 34
dipole orientation, 36–37
fast electron retrapping case, 34–35
general form of curve, 36
high electric field, 35–36
photostimulated detrapping current techniques, 41
relaxation time, dipole orientation process, 37
sequence with and without x-ray irradiation, 40
slow electron retrapping case, 35
test thickness for polymers, 42–44
thermoluminescence intensity, 38
measurements, 37
X-ray induced, 38–40
Thermal optical analysis, polymer degradation, 371–372
Thermal oxidative degradation, 383, 410
polyethylene, 412–418
polypropylene, effect of transition metal chelates, 424–426
polyvinyl chloride, 418–421
Thermal-oxidative stability, polymers, effect of metals, 422–426
Thermal stress, causes, 408
Thermogravimetric analysis, 388, 411–412
derivative, polyvinyl chloride, 420
polymer degradation, 353–354
Thermoluminescence
intensity, 38–40
measurements, 37
Thin films, breakdown strength measurements, 194–200
alumina film specimen preparation, 197–198
apparatus, 195
circuit analysis and statistical treatment, 198–199
electrometer arrangement, 196
film thickness, 197
inorganic films, 196
non-destructive breakdowns preceding non-reversible breakdown, 195
self-healing effects, 194
specific breakdown field, 199
time lag, 197, 199
Thompson-Harris low frequency bridge, 54, 75–79
balance equations, 77–78
current node equations, 77
equivalent circuit, 76
measurement range, 78
modified version, 79–80
schematic circuit diagram, 76
with zero adjustment feature, 78–79
Time domain reflectometry, 123–126
dual channel configuration, 127–128
idealized trace, voltage step pulse, 125
long-time horizontal drift, 127
low frequency limit, 126
permittivity, 124–125
reflection coefficient, 124
sensitivity, 128
specimen thickness, 127
system, 123–124
time lag, 197, 199
Time parameter, 503
tin foil electrode, 12
Total reflection coefficient, 127
Tracking, 256–261
arcing problem, 260
arc tracking rate test, 267
coatings with non-linear resistance characteristic with voltage, 260
comparative tracking index, 283–284
contamination, defined, 282
d-c, 285–286
defined, 282
differential wet, 288
dust-and-fog, 287–288
geometry producing high voltage gradient, 258
inclined-plane test
erosion depth and volume, 295
evolved gas under scintillation, 298, 301
failures, 292
influence of variables, 299–300
liquid-contaminant, 288
range of voltage to produce scintillation, 290
sugar added to ammonium chloride contaminant, 296, 299
values, 293
initial voltage, 288
contaminant influence, 296
Tracking (continued)
lateral failure, 257–258
low d-c voltages, 286
resistance to, 263
severe ambient conditions, 288–289
solids immersed in insulating oil, 256–257
time-to-track, 288
voltage
different gas ambients, 296, 300
distribution along surface, 259
versus number of contaminant droplets, 284
versus resistivity of contaminant, 290–291
voltage test, 288
wet contaminated, 282–286
Transformer ratio arm bridge, 88–89, 211–216
balance condition, 89
balance equation, 93, 213
balancing, 89–90
 capacitance, 213
 shunting, 94
dissipation factor, 93, 212–213, 215
errors, 91–92, 212
features, 94
frequency range, 94
Gen Rad Type 1621, 90–93
in-phase current component, 214–215
modified, 211
NRC/Guideline current comparator bridge, 214–215
schematic, 213
three-terminal connection, 91
Transient voltages, 178
Transition metal chelates
effect on oxidative thermal degradation of polypropylene, 424–426
structure, 425
Transmission line method
dielectric constant, 133
dissipation factor, 133
impedance at specimen-air interface, 130
load impedance, 130–131
phase constant, 130
phase distance, 132
propagation constant, 129
radiation wavelength in free space, 129
schematic diagram, 131
shorted coaxial line, 129
specimen holder, 132
standing wave pattern, 129, 131
voltage standing wave ratio, 130
Transmittance IR, 363
Treeing, 338–339, 372
free radical chemistry, 405
frequency and, 407
partial discharges, 405
Triboelectric series, 441–442
Triboelectrification, 441
 t-test, 513, 516–517
Tunnelling, electrostatic charge, 444
 t-values, 508

U
Unshielded wires and cables, water-electrode-bath system, 7

V
van’t Hoff’s law, 343
Vapor phase osmometry, 341–342
Variance, 495–496
Vented trees, 339
Vibrating capacitance system, 45
Vibrating capacitor modulator, 461
Vibrating vane modulator, 461–462
Vibration galvanometers, 201–202
Vinyl hydroperoxides, 393
Virtual-front time, 179
 impulse generators, 185
Viscoelasticity, 354
Viscometer, 346–347
Viscosity, 346–347
intrinsic, 347
change when heated, 416–417
effect of heating time, 413
as function of temperature, 336
Viscosity-average molecular weight, 340
Volatile analysis, polymer degradation, 356–362, 408–411
gas chromatography, 356–358
gas chromatography-mass spectrometry, 361
high performance liquid chromatography, 361–362
mass spectrometry, 359–360
Voltage
aging, polymers, 338–339
incident pulse, Fourier transform, 126
reflection pulse, Fourier transform, 126
square pulse, 72–73
standing wave ratio, 130, 136
step, 122–123
Voltage breakdown
defined, 176
direct, 177
histogram, 492
Voltage breakdown tests, 157–200
history, 157–158
immersion fluids, 159
intrinsic breakdown strength, 160–161, 165–172
a-c breakdown tests, 175–177
corona discharges, 162–164
d-c breakdown tests, 177–178
defects, 173
definition, 161–162
dielectric failure, defined, 176
electrode considerations, 174
impulse breakdown tests, 178–179
impulse strength, 173–174
measurements, 161–165
metallic evaporated films, 163
pulsed voltage conditions, 180
short time test, 175, 177
slow-rate-of-rise test, 175–176
space charge effect hypothesis, 173–174
specimen thickness, 173
step-by-step test, 175–176
surface tracking, 174
temperature effects, 173
test apparatus, 180–193
test chamber, 174–175
testing procedures, 172–180
thin films, 194–200
transient voltages, 178
virtual-front line, 179
voltage application rate, 173
voltage source, inadvertent tripping, 177
see also Electrode system
permittivity real value, 159
recessed electrode system, 160
with spherical HV electrode, 162–164
Voltage-life-curve, 525
Voltage rate-of-change method, 25–27
Voltmeter-ammeter method
with calibrated potentiometer, 23–25
with d-c amplification, 23–24
comparison method, 27–28
Volume discharges, 379–382

W
Wagner's earth method, 82–83, 206
Water analysis, polymer degradation, 372–373
Water-electrode-bath system, direct-current conductivity, 7
Water tree, 338–339
Waveguides, electromagnetic wave propagation modes, 61–62
Weibull distribution, 492–493, 501–508
analytical determination of parameters, 507–508
commercial paper, 505–507
comparative tests, 517
95% confidence bounds, 514, 516
80% confidence intervals, 515, 519
definition, 502
different scale parameters with same shape parameter, 502
different shape parameters with same scale parameter, 503
failure rate versus time, 504
graphic determination of parameters, 505–507
relation to inverse power model, 525
small beta estimator, 507
stress parameter, 507
stress plot, 502–503
time plot, 502–504
voltage-life plot of time-to-failure data, 525
V-values, 511–512
W-values, 512
Weight-average molecular weight, polymer degradation, 343–345
equation, 340
light scattering, 343–345
Wetting tension, 223
Wheatstone bridge method, 28–30
Wien bridge, 53
X
X-ray induced thermally stimulated current, 38–40