Subject Index

A

Acetate replica, for studying crack development, 227
Acoustic emission techniques, use of, to detect load corresponding to crack initiation, 644–660
Alternating-current potential drop technique
 for J-R curve testing, 367, 743
 for monitoring crack growth, 456, 460, 462, 465
Analysis and mechanisms
 assessing the dominant mechanism for size effect on CTOD values, 715–740
 boundary layer effects in cracked bodies, 775–788
 comparison of ductile crack growth resistance, 661–682
 dynamic crack propagation and branching under biaxial loading, 697–714
 dynamic J-R curve testing of a high strength steel, 741–774
 empirical surface crack solution for fatigue propagation analysis of notched components, 601–624
 extension of surface cracks during cyclic loading, 625–643
 minimum time criterion for crack instability in structural materials, 683–696
 predicted versus experimental stress for initiation of crack growth in specimens containing surface cracks, 644–660
 stress intensity factors
 for circular ring, 559–572
 for circumferential surface cracks, 789–805
 weight functions of radical cracks, 573–600
Applications
 behavior of ductile iron and cast steel, 75–94
 fracture behavior of thick laminated composites, 124–135
 fracture mechanics to ship controllable pitch propeller crank ring, 5–21
 loading rate on dynamic fracture of reaction bonded silicon nitride, 95–107
 resistance curve approach to composite materials characterization, 108–123
 residual strength of boron/aluminum laminates, 136–152
 variable flaw shape analysis for reactor vessel under pressurized thermal shock loading, 41–58
 wide plate arrest test on weld joints of steel, 22–40
Arc bend geometries, 280–281
Arc bend specimens
 fracture testing with, 279–296
 aluminum tests, 291, 293
 steel tests, 289, 291
Arc support, 280
Arc-tension specimens, \(J_{lc} \) testing using, 297–306
ASME Boiler and Pressure Vessel Code, 42, 52, 55

ASTM
A 216: 78, 79
A 536: 78
A 710: 647, 660
E 8: 436, 544, 647
E 23: 437
E 616: 663
E 647: 236, 364

ASTM A106 steel, 742
influence of partial unloadings range on J-R curves of, 364–378
J resistance curve analysis of, 435–453

ASTM A470 steel, 198, 200
ASTM A508 steel, 43
ASTM A533 steel, 43
ASTM A710 steel, 647

ASTM Subcommittee E24.06, 615
Automated photomicroscopic system (see Photomicroscopic system)

B

Bauschinger effect, 206, 377
Bending, and application of fracture mechanics to ship controllable pitch propeller crank ring, 12–15, 37

Biaxial loading
application of superposition principle to, 574, 582, 588, 594, 599
dynamic crack propagation and branching under, 697–714
Bodner-Partom constitutive law, 266
Boron/aluminum laminates law, residual strength of, after fatigue loading, 136–152
Boundary integral analysis
for solving stress-intensity factors, 801
for solving tension loading, 59–60, 65
Boundary layer effects, in cracked bodies, 775–788
Brittle fracture (see also Fracture behavior; Fracture mechanics; Fracture toughness)
propagation of, 23
types of, 29–30

C

Carbon-manganese steels, assessing size effects on CTOD values in ductile-to-brittle transition region, 715–740
Cast steel, fracture behavior of, 75–94
CCA test (see Compact crack arrest (CCA) test)
Center-cracked tension (M(T)), use of, in comparing fracture behavior for laminate thickness, 124–135
Ceramic failures, use of linear elastic fracture mechanics to analyze, 96
Charpy impact test, 308
assessment of J-R curves obtained from precracked, 401–411
correlation with HAZ-SCA test results and, 36-37
differences between fracture mechanics tests and, in comparing fracture toughness of ductile iron and cast steel, 76-78, 79, 82, 83, 86, 88-89, 91-93
relationship between HAZ-SCA results, 36-37
use of, to determining strength and toughness requirements for the crank ring, 17-18
Chord support, 280
C^* integral, and creep crack growth, 188-189, 192, 195, 200
Circular ring, stress intensity factors for, with uniform array of radial cracks, 559-572
Cladding, effect of, on toughness in reactor vessel steels, 49, 56
Cleavage fracture, and weakest-link statistics, 715-740
Closure phenomenon, 253-254
Compact crack arrest (CCA) test, 34-35
correlation of, to SCA and wide plate tests, 38
Compact tension (C(T)) specimens for assessing J-R curves, 401-411, 437, 439, 442-443, 445-446
automated photomicroscopic system study of, 231, 235, 237
for comparing fracture behavior for laminate thickness, 124-135
crack growth using the J integral in, 503, 511
fracture toughness testing of Zircaloy-2 pressure tube material, 379-400
J_{lc} testing of, 297, 300, 302
Mode II fracture testing of, 347-363
for testing effects of elastic unloadings on the J integral-resistance curves of ASTM A106 steel and 3-Ni steels, 364-378
for testing plastic energy dissipation, 544, 546, 548, 549, 550, 552-553
and viscoplastic fatigue, at elevated temperatures, 265, 268, 270, 274
Composites
correlation of thick laminated graphite/epoxy, 124-135
resistance curve approach of characterization of, 108-122
Cracked bodies, boundary layer effects in, 775-788
Crack growth and propagation (see also Creep crack growth; Crack tip opening displacement; Fatigue crack growth and propagation; Radial cracks; Subcritical crack growth; Surface cracks)
and branching under biaxial loading, 697-714
comparison of predicted versus experimental stress for initiation of, in specimens with surface cracks, 644-660
computation of stable, using J-integral, 503-511
evaluation of environmental effect on, in high strength steel, with elastic-plastic fracture mechanics techniques, 512-541
influence of depth of, on resistance curves for three-point bend specimens in HY130, 454-484
minimum time criterion for instability, in structural materials, 683-696
Crack growth and propagation (cont.)
in Mode II fracture specimens, 345-346
plastic energy dissipation as parameter to characterize, 542-555
in reaction-bonded silicon nitride, 95-107
in reactor vessel steels, 41-58
stress intensity factors for circular ring with uniform array of radial cracks, 559-572
in surface of circumferential plane of solid and hollow cylinders, 59-74
in Zircaloy-2, 384-386
Crack tip constraint, 729
Crack tip opening displacement (CTOD)
effect of depth on, 459, 460, 464, 469, 475-480
measurement of, during high-temperature fatigue, 253-264
size effects on values, in the ductile-to-brittle transition region, 715-740
and stress waves, 684, 690-693, 694
and testing weld joints of steel, 24-25, 27
fatigue, 25, 27
monotonic, 25, 27
and testing with ultrasonic method to determine, 415-434
Crack tip parameter, 188-193, 194-198
Creep crack growth, under non-steady-state conditions, 185-201
Creep crack growth testing, 193-194
Cryogenic use, application of stress intensity factor to fatigue strength analysis of welded Invar sheet for, 202-225
C(T) (see Compact tension (C(T)) specimens)
Cumulative damage model (see Linear cumulative damage model)
Cumulative extension method, use of, to obtain resistance curves, 113-114
Cyclic-dominated crack growth, 366
Cyclic loading
elastic-plastic fracture resistance under, 417, 420, 422, 427
extension of surface cracks during, 625-643
and Mode II fatigue crack growth, 338-340, 342
and multiple fatigue cracks, 239, 241
and viscoplastic fatigue, 269-270
welded Invar steel under, 204, 212-213, 215-217, 220-221, 223-224
Cyclic stress, in propeller crank rings, 6
Cylinders
fracture testing with arc bend specimens made from, 279-295
growth behavior of surface cracks in circumferential plane of solid and hollow, 59-74

D

Data reduction, modified incremental polynomial method of, 236-237
Deep compliance unloading, 374-375
Deep elastic unloading, 367, 370-371
Deformation theory model, 486
Deformation plasticity theory formula, 747
Deformation theory plasticity, 365
Delamination, resistance curve approach to, 108–122
Direct-current potential drop technique
for crack extension measurements, 437, 440, 441, 443, 445, 447, 527, 535
fracture toughness testing of Zircaloy-2, with, 379–400
Direct fracture mechanics analysis, use of, in analyzing reactor vessel steels, 44
dJ/da analysis, 494–495

J-R curve testing, 756, 759, 761, 765, 766
Dual-gage procedure, for J-R curve testing, 367
Ductile iron, fracture behavior of, 75–84
Ductile fracture (see also Fracture behavior; Fracture mechanics; Fracture testing; Fracture toughness)
comparison of resistance in stainless steel, 661–682
computation of stable crack growth using J-integral, 503–511
evaluation of environmentally assisted cracking of high strength steel, 512–541
influence of crack depth on resistance curves for three-point bend specimens, 454–484
investigation of the I and dJ/da concepts for ductile tearing instability, 485–502
J-resistance curve analysis, 435–453
plastic energy dissipation, 542–555
single-specimen determination of elastic-plastic fracture resistance by ultrasonic method, 415–434
Ductile tearing instability and crank ring material toughness, 17–18
investigation of the I and dJ/da concepts for, 485–502
Ductile-to-brittle transition region, assessing size effects on CTOD values in, 715–740
Dynamic crack arrest, in reaction-bonded silicon nitride, 96
Dynamic finite element analysis (see Finite element analysis)
Dynamic fracture (see also Fracture behavior; Fracture mechanics; Fracture testing; Fracture toughness)
behavior of ductile iron and cast steel, 75–94
effect of loading rate on, of reaction-bonded silicon nitride, 95–107
testing for toughness of 4340 steel, 307–328
Dynamic loading (see Loading)
Dynamic stress intensity factor (see Stress intensity factor)

E
Elastic compliance, 365
Elastic compliance technique, for measuring crack extensions, 437, 441, 442, 443, 445
Elastic-plastic analysis, use of, to measure stress in testing for

Elastic-plastic fracture mechanics techniques, evaluating environmentally assisted cracking of high strength steel using, 512–541

Elastic-plastic fracture resistance R-curve, 422, 424–426

Elastic-plastic fracture resistance, single-specimen determination of, by ultrasonic method, 415–434

Elastic-plastic materials, finite element studies of, 346

Elastic unholdings, effects of, on the J_{I-R} curves of ASTM A106 steel and 3-Ni steels, 364–378

Electric potential monitoring, for studying crack development, 227

Empirical surface crack solution, for fatigue propagation analysis of, 601–624

Energy rate I balance method, 493–494

Energy release rate I, 499–500

effect of compliance on, 501

Energy rate I theory
comparison of, with the T or dJ/da theories for ductile tearing instability, 485–502

statement of, 487–489

ESSO test, use of, to evaluate brittle fracture arrest capability of steel materials, 27, 38

Fatigue

near-tip crack displacement measurement during high-temperature, 253–264

study of viscoplastic, in superalloys at elevated temperatures, 265–275

Fatigue crack growth and propagation (see also Crack growth and propagation)
automated photomicroscopic system for monitoring, 226–238

interactive effects of frequency loading on, of Inconel 718, 169–184

in propeller crank rings, 68

empirical surface crack solution for, 601–624

hold-time effects in elevated temperature, 155–168

investigation of multiple, at notches, 239–252

Mode II, 329–346

Fatigue flaw growth analysis (see also Flaw shape growth analysis of surface cracks in circumferential plane of solid and hollow cylinders), 59–74

Fatigue loading (see also Loading)
residual strength of boron/aluminum laminates after, 136–152

Fatigue propagation analysis, empirical surface crack solution for, 601–624

Fatigue strength analysis, application of stress intensity factor, for welded Invar sheet for cryogenic use, 202–225

FEM (see Finite element method)

Fiber
damage resulting from fatigue loading of boron/aluminum laminates, 139, 140, 144, 147
effect of types of, on resistance to delamination growth, 116, 121
Finite element analysis
 for analyzing stress intensity factors for radial cracks of unequal depth, 559-572
 for analyzing weight functions of radial cracks, 573-600
 for calculating stress-intensity factors for circumferential surface cracks in pipes and rods, 792-793, 803-804
 for elastic-plastic materials, 346
 for estimating magnitude of crank ring flange load, 9, 10-12
 for measuring stress in testing for fatigue strength of welded Invar sheet, 206-207
 for Mode II fracture toughness testing, 349, 351-354
 for reaction bonded silicon nitride, 98
 for solving tension and bending problems, 60, 65
 for viscoplastic fatigue in superalloys, 268

Flaw shape change analysis (see also Fatigue flaw growth analysis)
 control parameters for, 48-51
 method of, 43
 determination of K_1 for surface flaws, 43-48
 determination of material properties, 43
 results of, 52-55
 sample calculations, 51

4340 steel (see High strength steel)

Fracture behavior
 of ductile iron and cast steel, 75-84
 effect of laminate thickness on, of laminated graphite/epoxy composites, 124-135

Fracture mechanics
 application of, to ship controllable pitch propeller crank ring, 5-21
 extension of surface cracks during cyclic loading, 625-643
 and stress analysis of crack growth in specimens containing surface cracks, 644-660

Fracture testing (see also Fracture toughness)
 of arc-bend specimens, 279-296
 of compact Mode II fracture specimens, 347-363
 of ductile iron versus cast steel, 76, 77, 82, 86
 J_{lc} testing using arc-tension specimens, 297-306
 of J-R curves obtained from pre-cracked Charpy specimens, 401-411
 of Mode II fatigue crack growth specimens, 329-346
 of partial unloadings range on the J-R curves of ASTM A106 and 3-Ni steels, 364-378
 with the one-point-bend impact test, 307-328
 of Zircaloy-2 pressure tube material with radial hydrides using direct-current potential drop, 379-400

Fracture toughness (see also Fracture testing)
 in boron/aluminum laminates, 136-152
 in ductile iron versus cast steel, 75-94
 in Perspex, 347-363
 in reactor vessel steels, 43, 48-49, 56
 in resins, 108-109
 in stainless steel, 661-682
 in thick laminate composites, 124-135
 in weld joints of steel, 23, 24
Fracture toughness gradient in the base metal, 49
Frequency loading, interactive effects of, on fatigue crack growth in Inconel 718, 169–184
Frozen stress photoelasticity (see Photoelasticity)

G
Graphite/epoxy composites, comparison of fracture toughness of, 124–135
Green’s function, 574

H
HAZ-SCA test
development of, 27, 29–30
effect of nickel content of base plate on results, 35–36
relationship between Charpy test results and, 36–37
results of, 30, 32, 34
High density moiré interferometry (see Moiré interferometry)
High frequency loading (see Frequency loading)
High strength steel
ductile tearing instability in, 485–502
evaluation of environmentally assisted cracking of, using elastic-plastic fracture mechanics techniques, 512–541
fracture toughness of, 307–328
influence of crack depth on resistance curves for three-point bend specimens in, 454–484
J-R curve testing of, using the key curve and multispecimen techniques, 741–774
plastic energy dissipation as parameter to characterize crack growth in, 542–555
High temperature (see Temperature)
Hold-time effects, in elevated temperature fatigue crack propagation, 155–168
Homa-lite 100, dynamic crack propagation and branching under biaxial loading, 697–714
Hooke’s law, 266
HY-130 high strength steel (see High strength steel)
Hydrogen embrittlement mechanism, and environmentally assisted cracking, 513, 531, 535

I
I concept (see Energy rate I balance method; Energy release rate I; Energy rate I theory)
Immediate rate J-R curve testing, 754–756
Impact toughness testing, of high strength steel, 744, 749
Inconel 718
effects of hold times on fatigue crack growth rate of, 155–168
interactive effects of frequency loading on fatigue crack growth of, 169–184
near-tip crack displacement measurements during high-temperature fatigue in, 253–264
prediction of surface cracks in, 610–612, 619
Incremental extension method, for obtaining resistance curves, 112–113
Interference pressure, pin-loaded hole with, 590, 592
Interferometry (see also Moiré interferometry)
use of, to study near-tip crack displacement during high-temperature fatigue, 253–264
Invar, stress analysis of, 202–225
Irradiation damage, in reactor vessel steels, 43, 56

J

J-integral
for computing stable crack growth using, 503–511
for evaluating environmental cracking of high strength steel using, 512–541
for measuring fracture toughness under elastic-plastic conditions, 365

J-R curves, 366–367
applicability of numerical smoothing to, 769
applicability of, to ship controllable pitch propeller crank ring, 15–16
assessment of, in precracked Charpy specimens, 401–411
for ASTM A106 steel 8-in.-diameter pipe and compact specimens, 435–453
in comparing ductile crack growth resistance in stainless steel, 661–682
influence of partial unloadings range on, of ASTM A106 and 3-Ni steels, 364–378
single-specimen determination of, 425–426
in testing of a high strength steel using the key curve and multispecimen techniques, 741–774

J_{le}
and arc-tension specimens, 297–306
in comparing ductile iron and cast steel, 82, 89, 92–93
J_{ld}, in comparing ductile iron and cast steel, 82, 89

K

Key curve analysis
J-R curve testing of a high strength steel with, 747–748
load drop method as, 401–402
K_1 (see Stress intensity factor)

K_{le}
in characterizing unstable crack growth, 380, 383, 390, 385–396
in comparison of ductile iron and cast steel, 76, 89, 92–93
in determining fracture toughness, 364
in 4340 steel, 320
for fracture initiation toughness, 25
in precracked Charpy specimens, 404, 408

K_{ld}
in comparison of ductile iron and cast steel, 82, 83, 86, 88–89, 93
in 4340 steel, 319–322
and reaction-bonded silicon nitrate, 96

L

Laminates
effect of thickness of, on fracture behavior of laminated graphite/epoxy composites, 124–135
residual strength of boron/aluminum, after fatigue loading, 136–152

Linear cumulative damage model, use of, to predict fatigue
crack growth, 157-160, 165, 166-167

Linear elastic fracture mechanics (LEFM)
in analyzing boundary layer effects in cracked bodies, 775, 785-788
in analyzing ceramic failures, 96
in characterizing fatigue fracture response, 365
in characterizing sustained load crack growth, 156
in determining fracture toughness, 127
in estimating n, 486
in predicting crack instability, 683-696
in studying crack growth, 227, 243, 512-513
in variable flaw shape analysis, 43, 56

Load drop analysis, for measuring crack growth in Charpy specimens, 401-402, 405, 407, 409, 410-411

Loading (see also Frequency loading)
dynamic, and quasi-static J analysis, 770-771
effect of rate of, on dynamic fracture of reaction-bonded silicon nitride, 95-107

Low frequency loading (see Frequency loading)

Low temperature (see Temperature)

M

Mann-Whitney test, 721-723
Matrix damage, resulting from fatigue loading of boron/aluminum laminates, 147, 151
Maximum tangential stress theory, 34, 346
Merkle-Corten analysis, 298

Microhardness mapping, in comparing ductile iron and cast steel, 82, 91
Minimum time criterion, for crack instability in structural materials, 683-696

Mode I
delamination growth resistance of composites under, 108-123
finite element analysis of, 349, 351, 354-357
stress intensity studies of, 330-331, 346
and the weight function concept, 573-600

Mode II
fatigue crack growth specimen development, 329-346
fracture testing of, 347-363
Modified incremental polynomial method of date reduction, 236-237
Modified mapping collocation (MMC), accuracy of, in calculating stress intensity factors for shallow cracks, 570
Moiré interferometry (see also Interferometry)
in analyzing boundary layer effects in cracked bodies, 775-779
Multi-degree-of-freedom model, for crack development, 241
Multiple unloading R-curve determination, 427-429
Multispecimen method for J-R curve testing
of ASTM A106 and 3-Ni steels, 365, 366, 369, 372-373, 377
of a high strength steel with, 748-749

N

Nickel-base superalloys (see also Inconel 718; Superalloys)
sustained load crack growth rates in, 156
Nodal-force method, use of, to calculate stress intensity factors, 791
Nodal release, and computation of stable crack growth using the J integral, 503-511
Non-steady-state conditions, creep crack growth under, 185-201
Notch constraint, 727, 729, 731
Numerical smoothing, applicability of, to J-R curve evaluation, 767, 769

O
1D/2D flux effect, in reactor vessel steels, 50, 55, 56
One-point-bend impact test estimation of the duration \(T_0 \), 324-325
estimation of the maximum amplitude \(K_{\text{max}} \), 325-327
investigation and application of, 307-328

P
Perspex (see Polymethyl methacrylate (PMMA))
Photoelasticity for analyzing boundary layer effects in cracked bodies, 775-788
for examining Mode II specimens, 348, 349
for studying high speed crack propagation, 697-714
Photomicroscopic system, use of automated, for monitoring the growth of fatigue cracks, 226-238
Pin-joint loading, application of superposition principle to, 574, 588, 590
Pin-loaded hole with interference pressure, 590, 592
Pipe specimen fracture toughness test results, 446-447, 449-450, 452
Plastic energy dissipation, as parameter to characterize crack growth, 542-555
Plexiglas (see Polymethyl methacrylate (PMMA))
Polymethyl methacrylate (PMMA) fracture toughness of, 346, 347-363
prediction of surface cracks in, 615-616
Pulse echo technique, 417

Q
Quasi-static J analysis, application of, to dynamic loading, 770-771
Quasi-static J-R curve testing, of a high strength steel, 749, 752, 754

R
Radial cracks stress intensity factors for circular ring with uniform array of, 559-572
weight functions of, 573-600
R-curve-dominated crack growth, 366
Reaction-bonded silicon nitride (RBSN), effect of loading rate on dynamic fracture of, 95-107
Reactor vessels, application of variable flaw shape analysis to under pressurized thermal shock loading, 41-58
Recrystallization, 543
Residual life prediction, for subcomponent specimens, under complex loadings, 602-603, 612, 614-615, 620

Resins
fracture toughness in, 108-109
resistance of, to delamination growth, 116, 121-122
Resistance curves, 108-123
cumulative extension method, 113-114
for ductile tearing instability, 486-487, 488, 491, 497-501
incremental extension method, 112-113
influence of crack development on, for three-point bend specimens in HY130, 454-484
influence of environment on, 117
influence of fiber-resin combination on, 116
influence of porosity on, 117, 119
resistance for AS1/3501-6 laminate, 114, 116
for T300/5208, 119
for tough materials, 121
RT_{NDT}, 48-49, 52-53, 55, 56

S
Scanning electron microscope (SEM)
for studying crack development, 227, 254
for studying fracture surfaces, 668, 672, 679
for studying microfracture, 322
for studying Mode II fatigue crack growth, 343
SE(B) specimen (see Three-point bend specimens)
Ship components (see Ship controllable pitch propeller crank ring)
Ship controllable pitch propeller crank ring, application of fracture mechanics to, 5-21
Short crack arrest (SCA) test
correlation of CCA test to, 38-39
development of, 27, 29-30
modification of, 37-38
results, 30, 32, 34
Single-specimen testing
of elastic-plastic fracture resistance by ultrasonic method, 415-434
of $J-R$ curves
in ASTM A106 and 3-Ni steels, 367, 370-371, 377
in stainless steel, 663, 666
Size effects of crack tip opening displacement values in the ductile-to-brittle transition region, 715-740
Stainless steel (see also Cladding)
comparison of ductile crack growth resistance in, 661-682
Steel (see Carbon-manganese steel; Cast steel; High Strength steel; Stainless steel)
Strain gage measurements, use of, in estimating magnitude of crank ring flange load, 9-10
Stress analysis (see Stress intensity factor)
Stress intensity factor
and analyzing boundary layer effects in cracked bodies, 775-788
and analyzing ceramic failures, 96
and analyzing fatigue strength of welded Invar sheet for cryogenic use, 202-225
for circular ring with radial cracks of unequal depth, 559-572
for circumferential surface cracks in pipes and rods under tension and bending loads, 789-805
and crack propagation and branching under biaxial loading, 697-714
evaluation of, for radial cracks emanating from circular hole, 573–600
for initiation of crack growth in specimens containing surface cracks, 644–660
in reaction-bonded silicon nitrate, 96, 101–102
for reactor vessel steels, 42, 43–48
for surface cracks
in finite solids, 601–624
multiple at notches, 241–242
in solid and hollow cylinders, 59, 60, 65, 68, 70, 72
and use of one-point-bend impact test, 307–328
Stress intensity histories, and minimum time criterion for crack instability in structural materials, 683–696
Stress wave loading, and minimum time criterion for crack instability, 683–696
Structural materials, minimum time criterion for crack instability in, 683–696
Subcritical crack growth (see also Crack growth and propagation; Fatigue crack growth and propagation)
automated photomicroscopic system for monitoring crack growth, 226–227
creep crack growth under nonsteady state conditions, 185–201
hold-time effects in elevated temperature fatigue crack propagation, 155–168
interactive effects of frequency loading in Inconel 718, 169–184
investigation of multiple fatigue cracks, 239–252
near-tip crack displacement measurements during high temperature fatigue, 253–264
stress intensity factors and fatigue strength analysis of welded Invar steel, 202–225
viscoplastic fatigue at elevated temperatures, 265–275
Superalloys (see also Inconel 718; Nickel-base superalloy)
viscoplastic fatigue in, at elevated temperatures, 265–275
Superposition principle
in analyzing stress intensity factors, 44, 602–603, 605, 620
and biaxial loading, 574, 582, 588, 594, 599
and pin-joint loading, 574, 588, 590, 594, 599
and weight function concept, 575, 576
Surface cracks (see also Crack growth and propagation; Fatigue crack growth and propagation)
comparison of predicted versus experimental stress for initiation of, in specimens with, 644–660
determination of, in reaction vessel steels, 43–48
empirical solution for fatigue propagation analysis of notched components, 601–624
extension of, during cyclic loading, 625–643
growth behavior of, in cylinders, 59–74
stress-intensity factors for, in pipes and rods, 789–805

T

T analysis, 496–497
Tearing instability theory, 742
Temperature (see also Cryogenic use)
- effect of low on wide plate arrest test on steel weld joints, 22-40
- effect of elevated, on viscoplastic fatigue in superalloys, 265-275
- effect of, on near-tip crack displacement measurements during fatigue, 253-264
- influence of, on creep crack growth behavior, 198
- 10% compliance unloading, 373
- 10% elastic unloading, 370
- Tensile testing, of high strength steels, 743, 749
- Tension loading, problem of, 59-60
- Thermal shock loading, application of variable flaw shape analysis, to reactor vessel under pressurized, 41-58
- Thick laminates (see Laminates)
- 3-Ni steel (see ASTM A106 steel)
- Three-point bend (SE(B)) specimens in arc bend geometries, 280
 in assessing J-R curves, 401-411
 in comparing fracture behavior for laminate thickness, 124-135
 derivation of N_e for side-grooved, 482-483
 derivation of N_p, 480-481
 and influence of crack depth on resistance curves for, 454-484
- J_{IC} testing using, 297
 and stress intensity history, 309, 323
 for testing plastic energy dissipation, 544, 547, 553
- Time-dependent fracture mechanics (TDFM), 185
- Titanium, multiple fatigue cracks in, 244-251
- Toughness (see Fracture toughness)

U
- Ultrasonic method, single-specimen determination of elastic-plastic fracture resistance by, 415-434
- Unloading effect, on the J-R curve, 372-376

V
- Variable flaw shape analysis, application of, to reactor vessel under pressurized thermal shock loading, 41-58
- Virtual crack extension (VCE) method
 in determining K_I distribution of semi-elliptical cracks in a reactor vessel, 44-48
 in evaluating weight functions of radial cracks, 573-600
- Viscoplastic fatigue, in superalloys at elevated temperatures, 265-275
- Void growth, 346

W
- Warm prestressing (WPS) effect, in reactor vessel steels, 49, 51, 53-54, 56
- Waspaloy, multiple fatigue cracks in, 244-251
- Weakest-link statistics, and cleavage fractures, 715-740
- Weibull distribution, 720, 721, 723
- Weight functions, of radial cracks, 573-600
- Weight function technique, 620
 in computing K_I for reactor vessel steels, 43-44
 and stress intensity factors for surface cracks in finite solids, 602, 605-606, 620
Welded steel joints
fatigue strength analysis of, for cryogenic use, 202-225
wide plate arrest test, for low-temperature application, 22-40
Wide plate arrest test (SCA test) correlation of CCA test to, 38

low temperature application on steel weld joints, 22-40

Z
Zircaloy-2 pressure tube material, fracture toughness testing of, 379-400