Subject Index

A

AATC (see American Association of Textile Chemists and Colorists)
Acetone, permeation rate, 90
Adsorption, 39
Advanced gas-cooled nuclear reactor, working environment (see also Thermal protective clothing, dynamically insulated), 536
Agricultural worker, 95
Air blast applicators, use of protective clothing and equipment with, 104, 111
Air permeability, 151
Air thermometer, 379
Alcohol, permeation in hairless mouse, 230
Allergenic substances, 246
Aluminized coats, 475, 482
Aluminized fabrics, molten iron splash protection (see also Asbestos, aluminized), 401
Aluminum
 nonwoven, dynamic temperature measurements, 383
 sticking on fabrics, 439
Aluminum/wool, dynamic temperature measurements, 385
American Association of Textile Chemists and Colorists (AATC) test methods
 AATC Test Method 22-1980: 180
 AATC Test Method 61-1980: 166, 180
 AATC Test Method 79-1979: 140
 AATC Test Method 124-1978: 158
Ammonia cure process, 439
Aniline, glove permeation testing, 75
Anthropometric fit testing and evaluation, 556-568, 616-617
 analysis and reporting, 566-567
 anomalies, 561
 battledress uniform for men and women, 591
 bivariate frequency table, 559
 data collection phase, 566-567
 debriefing, 563, 566
 hand size dimensions, 566
 integration of assemblage, 562, 564
 pretest preparation, 557-560
 procurement tariff, 567
 questionnaire, 560
Anthropometric sizing system, 569-580, 616-617
 battledress uniform for men and women, 581-592
 20-size system, 585-587
 anthropometric design values for three sizes of shirt, 588-590
 average ranges to be accommodated, 584-585
 construction and grading of master patterns, 587-591
 derivation of sizing systems, 582, 584-587
 key sizing dimension, 582
 shirt size categories and tariff, 588
Anthropometric sizing system (cont.)
battledress uniform for men and
women (cont.)
trouser size categories and tar-
iff, 589
bivariate frequency plot of stature
and weight values, 575
bivariate plot of height and width
with three-size system, 577
eight-size system for total body,
categories and tariff, 579
problems with scaling sizes, 570
steps for developing, 573
summary statistics for size X-large
regular, 574, 576
three-size anthropometric sizing
system, 578
three-size system based on size me-
dium, 570–572
Applicators, 95–96
average exposure (see also Califor-
nia pesticide applicators' atti-
dudes and practices), 97
Aramid fabric, 331–332, 389, 470
Asbestos
abrasion testing, 454
aluminized, 458–459
heat transmission factors, 313
molten iron splash protection, 401
average calorimeter tempera-
ture rise in molten splash, 457
fabric, properties, 450
gloves, 399–400, 451–454
history of use, 446
molten iron splash evaluation, 459
properties, 447–449
substitutes (see also Fiberglass;
Zetex), 446–460
properties, 448
raw materials, 447
visual ratings of fabrics, 456
ASTM Committee F-23 on Protective
Clothing, history of, 1–2

ASTM permeation cell, 22, 28–30
ASTM standards
B 117-73(1979): 154
D 737-75(1980): 154
D 1388-64: 397
D 1682-64(1975): 139, 165
D 1776-79: 140, 165, 189
D 1777-64(1975): 154
D 1910-64(1978): 154
D 2863-77: 392
D 3467-76: 40
D 3512-82: 398, 402
D 3775-84: 189
D 3776-84: 189
D 3787-80: 398
D 3884-80: 454
D 4108-82: 311, 316–321, 330,
334, 352, 360, 402, 407, 422–
423, 465, 612
E 84-84: 392
E 96-80: 154
E 622-83: 392
F 739-81: 9, 22–23, 26, 32, 52–53,
57, 60, 69, 75, 77, 82–83, 99–
100, 209, 215, 219, 247, 250–
251, 257–258, 607–608
F 903-84: 253–254, 263–264, 612

B
Blackbody, emissivity, 378
Blasocut Blaser, 61
Body size variability, 556, 569
Breakthrough time (see also Perme-
ation testing), 7
defined, 256
liquid chemicals through clothing
materials, 126
Saranex laminated Tyvek, 278
screens of materials, 122–123
British standards
BS 3791: 311–313, 316–317, 320,
326, 612
BS 4724-1971: 123, 131
BS 6357: 407, 413, 417
Burn injuries, 463
Burn prevention, 475
Burrell’s solvent spectra approach, 35
Burton’s equation, 516, 529
n-Butanol, 214–215, 218
Butyl rubber, 51
Butyl rubber gloves, 75–76, 78–79, 219
Butyl suits (see also Encapsulated chemical suits)
hydrogen cyanide permeation, 53, 55
problems with, 276–277
suit weight and noise level, 281, 284

users of restricted versus nonrestricted pesticides, 109–110
Calorimeters, 311
disadvantages, 416–417
Carbaryl, 95, 96
Carbon tetrachloride, adsorbed mass calculation, (see also Fabrics, adsorptive, evaluating), 45–46
Carcinogenic substances, 246
Cellulose, solubility parameters, 199
Chemical agent detection, 39
Chemical exposure hazards, 207–212, 610–611
decontamination and reuse, 211–212
exposure assessment, 210–211
protective clothing use, 209–210
Chemical protective clothing (see also Seams and closures; specific types of clothing), 207
decontamination (see Decontamination)
defined, 250
entrapment of substances, 212
field evaluation, 250–256
degradation testing, 251–253
penetration testing, 253–255
permeation testing (see Permeation testing)
fit testing, 561–563
gap in two-piece garment, 562–565
heat exchange, 515–534
cooling benefits from cover evaporation losses, 528–529
effects of pumping coefficients and solar heat load, 532–533
experimental and predicted results with wetted cover, 527
heat exchange model predictions, 526–528
mannikin runs, 524–525
model predictions, 529–532
net skin heat loss with wet cover, 531–532

C
Caliban finish, 439–440, 614
California pesticide applicators’ attitudes and practices, 103–112
applicators using air blast and other methods of pesticide application, 111
commercial applicators’ and growers’ responses, 109
frequency of safety equipment with reasons for low use, 107
laundering of work clothes, 104, 111–112
procedure for evaluation, 107
responses to clothing-related questions, 107–108
responses to cost and risk versus benefit questions, 108
sources of information on pesticide application, 106
storage and cleaning of clothing practices, 111–112
study of objectives, 105
users of Categories 1 and 2 pesticides and users of Category 3 pesticides, 110
Chemical protective clothing (cont.)
heat exchange (cont.)
permeability index, 525, 528
procedure, 522-524
water requirements to maintain
wet cover, 530
wetting with helmet, 533
model runs, 525-526
permeation resistance, 32-38,
607-609
criteria for selection of test
chemicals, 37
proposed test battery, 35, 37
solubility parameter, 33-36
potential exposure of worker with,
221
reuse, 211-212
selection and use, 235-242
available levels of protection,
237-238, 240-241
consequences of direct skin con-
tact, 237, 240
employee training for, 239, 242
likelihood of skin exposure,
236-237, 240
most appropriate selection,
238-239, 241-242
selection using permeation and
toxicity data, 243-249
permeation class, 247-248
risk information (see Risk infor-
mation)
use, 209-210
Chemical resistance test methods,
250
Chemical skin exposures, 208
Chemicals, permeation through
skin, 221-233
alcohol permeation in hairless
mouse, 230
as function of tape stripping of
skin, 224
comparison of mouse skin with hu-
man skin, 229
enhancers, 231
human skin, 228
in vitro permeation, 227, 231
in vivo procedures, 227
moisture vapor transmission in
skin, 225
non-electrolytes from aqueous so-
lutions, 229
permeability coefficient, 228
risk, 222-223
routes, 225
stratum corneum, 225-226
test methods, 226-228
Chemical toxicity, 243
Chlorine, permeation testing, 52
Clothing insulation (see also Ther-
mal protective clothing), 515
Coal tar, glove permeation break-
through times, 18
Contact thermometer, 379
Convective heat, 327
flux, 421
protection against, 330-331
behavior of aramid fabric, 331-
332
extreme specimen distortion,
331, 333
sensor response, 334-335
Corona discharge, 593
Corrosive substances, rating scale,
246
Cotton, comfort ratings versus poly-
benzimidazole-blend fabrics,
396
Cotton fire-retardant fabric, heat
protection (see also U.S. Navy
protective clothing program),
469-470
Cotton flame-retardant fabrics, 422,
438-444
ammonia cure process, 439
bulk density retention, 366-367
diathermacy, 370-371
fabric evaluation, 441-444
mass retention, 364
molten aluminum pour test, 442-443
physical properties, 441, 444
single and multiple layers, 421-437
0.3 cal/cm²/s radiant heat only, 427-429
1.0 cal/cm²/s convective/radiant exposure, 427, 430-431
2.0 cal/cm²/s convective/radiant exposure, 427, 432-433
comparison of contact versus spaced fabric/sensor configuration, 426
effect of color on radiant heat protection, 435
instrumental methods, 422-423, 426-427
materials, 422, 424-425
multiple-layer assembly diagram, 435
protection times, 434, 436
thickness retention, 365-366
Critical body voltage, 593

Decontamination, 207, 211-212, 612
defined, 299
encapsulated chemical suits, 288, 290
fire fighter turnout gear (see Fire fighter turnout gear, polychlorinated biphenyl decontamination)
Degradation, 250
testing, 251-253
Derksen curve, 466-467
Dermal exposure, pesticides, 96-97
Dermal pad dosimeters, 96
Dermatitis, 214
2,4-Dichlorophenoxyacetic acid, 95-96
Dimethylformamide, glove permeation testing, 75
Dimethyl sulfoxide, 231
DIN (German standard) 23 320, Part 1:321
Dinoseb, 114
Disposable garments, 151
Dump valves, 286, 293
Durable-press finish, 136, 162, 177, 180
increased pesticide penetration, 182
methyl parathion, distribution on fabrics (see also Malathion, distribution on fabrics), 200
Durable-press resin finishes, 138

Electron emission, 593
Electron microscopy, 187
Electrostatic spark discharges, incendiary behavior, 593-603, 617
critical body voltage
hydrogen ignition, 601
methane ignition, 599
Electrostatic spark discharges (cont.)
 ignition apparatus, 595-597
 ignition tests, 597-598
 minimum ignition energy, 594-595, 598-599
 gas mixtures, 598-599
 methane, 601
 thermal effect on, 599-600
 quenching effect of electrodes, 594-595
Encapsulated chemical suits, 286-296, 612
 maintenance of, 292-296
 drying, 292-293
 laundering, 292
 reassembly, 293
 soapy water inspection, 294-295
 storage, 295-296
 visual inspection, 293-294
 simulated work environment, 276-285
 protection factor and recovery time variability with air flow, 285
 suit weight and noise level comparison (see also Tyvek, Saranex laminated; Butyl suit), 284
use procedures, 287-292
 air cutoff, 291
 buddy system, 287
 communications, 288-289
 decontamination, 288, 290
 donning, 290
 in fire, 291-292
 loss of suit integrity, 290-291
 multiple-person donning, 287
 planning mission, 287-288
 ready personnel, 287
 self-extinguishing suits, 291-292
 training, 290-292
Equilibrium sorption capacity, absorptive fabrics, 45-46
 Esso Somentor 33, 61
 Evaporative heat loss, 515

F
 FAA (see Federal Aviation Administration)
 Fabric functional finishes (see also specific finishes), 136-149, 162
 aerosol spray penetration, 151-160
 air permeability test results, 155, 157
 dry spray, 158, 160
 fabrics, 153, 155, 157
 physical data, 154-156
 water vapor permeability, 155, 158-159
 contamination of fabric, 139
 effect on pesticide residue remaining after laundering, 168-170
 extraction procedure, 141
 fabrics tested with, 138-139
 fluorocarbon finishes (see Fluoro- carbon finishes)
 gas chromatographic analysis of, 141
 laundering of contaminated fabrics, 140, 147-149
 longevity of soil-repellent finishes, 172-173
 methyl parathion residues after laundering, 148
 moisture passing through textile layers, 137
 moisture-related fabric properties, 139-140
 pesticide penetration, 140, 143-147, 177-185
 analysis of, 181-182
 capillary forces, 137
 effects of laundering, 183-185
exposure amount, 180–181
fabrics and finishes tested, 178–180
pesticide extracted from collector layer, 182–183
statistical analysis, 184–185
pesticide wetting and wicking, 140–142
resin finishes, 138
statistical analysis, 141
water-repellent, 164
Fabrics, adsorptive, evaluating, 39–49
baseline mode, 43
breakthrough time, 46–47, 49
capacity, 49
challenge stream generator, 40–41
challenge stream mode, 43
degassing mode, 43
detection system, 41
equilibrium sorption capacity, 45–46
extrapolation of curve to saturation, 44–45
sample cell, 41–42
sorption kinetics, 46–48
test plumbing and instrumentation, 41–43
tests
mode, 43–44
reproducibility, 48–49
result curve, 44
total adsorption capacity, 48
Federal Aviation Administration standard FAA-RD-75-176: 311–312, 314, 612
Federal Aviation Regulation (FAR) 25.853b: 406
Federal test method standards (FTMS)
FTMS 191: 406, 465
FTMS 191A: 499
FTMS 191-5903: 392
FTMS 191-5905: 402
Fiberglass
aluminized, molten iron splash evaluation, 459
properties, 449
texturized (see Zetex)
Fire fighters, 463
temperature exposure, 464, 490
Fire fighter's turnout gear, 615–616
burn injuries and specific body regions, 489
functional integration, 487–495
methods, 490
heat protection characteristics, 472
history, 487–488
polybenzimidazole-blend fabrics, 400, 402–403
polychlorinated biphenyl decontamination, 298–307
analytical method, 300–301
decomposition results, 302–303
fabric sampling protocol, 300
Freon shower decontamination approach, 305–306
Freon solvent system decontamination, 301–303
process description, 303
site contamination and decontamination, 301
techniques and physical damage, 304–305
thermal protective performance rating, 491–494
Fire retardant materials, 497
Fires, use of encapsulated chemical suits in, 291–292
Fit testing (see Anthropometric fit testing and evaluation)
Flame impingement, 340
Flame ionization detector, 7, 41
Flame resistance, 421
polybenzimidazole-blend fabrics, 392
Flame-retardant finishes, 359

Flames
heat transmitted through uniform fabric/underwear combinations, 471
protection against (see also specific fabrics), 317-325, 329
convective heat transfer, influence of specimen mounting, 324
curved calorimeter, 321-322
estimated burn time, 318-319, 323
estimated pain time, 318-319, 323
fuel gas and calorimeter influence, 319
heat sensors, 319-320
heat source, 317-319
mounting plate as physical restraint, 324-325
specimen mounting, 320-325
transmitted heat measurement, 330-334
U.S. Navy protective clothing program, 500-501, 505-507

Flammability, 465
Fluorocarbon finishes, 137-138, 151, 162, 164-165
longevity, 173-174
pesticide action on penetration, 145
wick, 142
residues on after laundering, 169

Formaldehyde, permeation testing, 52-53, 56
French Experimental Standard S74-107: 407, 413
Freon 113 decontamination process, 304
Freon shower decontamination approach, 305-306
Freon TF solvent, 298, 301-303

Functional finishes (see Fabric functional finishes)

G

Glove materials
data base on protective effects (see Data base, protective effects of glove materials)
influence of thickness on permeation resistance, 75-81
breakthrough time, 77, 80
procedure, 76-77
results, 77-79
permeation measurement, 7-20
breakthrough times, 16-17
comparison measurement methods, 11
experimental method, 8-10
glove thickness and density, 12-13, 17
glove types studied, 10
liquefied coal, 15-18
permeation rate, 16
stainless steel permeation cell, 9
toluene, 11-15
washing experiments, 18-19
permeation resistance, 241
pesticide permeation testing, 99
testing against metal cutting fluids, 59-66
candidate materials, 62-63
challenge chemicals, 61
permeation testing, 60-61, 63-64
tensile strength testing, 62, 65
vulcanizing agents, 66

Gloves (see also Organic solvents, bioassay for glove performance), 207
anthropometric comparison of fit test sample, 566
asbestos, 451-453
chlorine permeation testing, 53
formaldehyde permeation testing, 53
high-temperature use, 399-400
procurement tariff, high-altitude gloves, 567
testing, 451-453
whole glove permeation testing, 256-257
Zetex, 451-453
Gore-Tex, 491
Ground boom sprayer, 95
Ground rig applicators, average exposure, 97
Guinea pig model, 214
skin absorption of chemicals, 218
Guthion, 114

Heat conduction, 340
Heat exchange
balance equation, 549, 551-554
chemical protective clothing (see Chemical protective clothing, heat exchange)
convection coefficient, 524
dry, and cooling efficiency, 516-518
evaporative heat loss from wetted cover, 518-519
from impermeable layer to clothing surface, 520-521
from skin to impermeable layer, 520
heat removal capability of air, 553
linear dew point temperature, 521
model predictions, 526-528
saturated vapor pressure, 519-522
sensible heat loss, 551
sweating loss, 552
wetted cover, 517
Heat flux, 423
Heat sensor, 311
Heat stress, 406, 515, 616
Heat transfer, 358
Hexane, glove permeation testing, 75
Hydrogen, 593
critical body voltage, 601
Hydrogen cyanide, permeation testing, 52
Ignition
hazard, 593
resistance, 465
time to, 340
Impermeable garment, 515
Infrared radiation theory, 377-379
Infrared spectroscopy, permeation tests, 22-30
ASTM cell pressure and detection of breakthrough time, 29
breakthrough time versus static pressure, 30
cell leakage, 29
effects of varying pressure and flow rates, 28-30
in-series or multiple tests, 26-27
purge time, 25-26
single-beam infrared instruments, 23
static pressure in closed system, 28
Teflon-lined gas cell, 25
Infrared thermometer, 376, 379-380
International Organization for Standardization (ISO) standards
ISO/DIS 6529: 123, 132
ISO/TC94/SC9/WG1N38: 318
PERFORMANCE OF PROTECTIVE CLOTHING

K

Kelvar, 389
- bulk density retention, 366–367
- mass retention, 363
- thermal properties, 371–372
- thickness retention, 365–366

Kirchhoff’s law, 377

L

Latex rubber, 51

Laundering, 136
- contaminated clothes, 140, 152
- distribution of malathion and methyl parathion (see Malathion, distribution on fabrics; Methyl parathion, distribution on fabrics)
- effectiveness, 147–149
- effect on barrier properties, 183–185
- encapsulated chemical suits, 292
- procedure effects, 163–175
 - effect of finishes, 165–166, 168–170
 - effect of laundry treatment, 169, 171
 - effect of pesticide class, 169, 171–172
 - effect on laundering, 165–166
 - extraction and analysis of pesticides, 166–167
- fabrics tested, 164–165
- hot water, 163
- insecticides, 165
- longevity of finishes, 172–173
- recommendations, 174–175
- residue remaining, 168–170
- specimen contamination, 165
- statistical analysis, 167

Lightweight clothing materials, heat protection (see also Thermal protective clothing fabrics, test methods), 340–356
- effect of assembly thickness on temperature rise, 352, 354
- fabric descriptions, 351
- factors that control performance, 341
- heat transfer and estimates of burn injury, 351–356
- ignition times, 351
- modeling thermal environment of large fire, 342–345
- quartz-faced heater panels, 343
- specimen temperature as function of time, 348
- strength loss times, 350
- strength retention at equilibrium temperature, 348
- temperature in skin stimulant, 352–353
- temperature rise at depths in skin stimulant device, 354–355
- thermal energy absorbed, 341
- transference of heat from outer to inner layers, 341

Liquefied coal
- contaminants after wash experiments, gloves, 18
- glove permeation, 7–8, 15–18
- breakthrough times, 16–17
- chromatographs, 20
- glove thickness and density, 17
- permeation rate, 16

M

Malathion
- chemical structure, 188
- distribution on fabrics, 187–203
 - backscattered electron images, 193
- contamination procedures, 189–190
- determination of pesticide residue, 190
- distribution of pesticides on surface and within fibers, 198
electron microscopy, 191
fabrics tested, 188–189
laundry procedure, 191
residues remaining after laundering, 192, 199
retention on durable-press after laundering, 201
retention on surfaces of fibers, 196, 202–203
solubility parameters, 199
summary of analyses of variance, 197
physiochemical parameters, 189
Mancozeb, 95, 96
Matrix release, 207, 211
Metal cutting fluids, 59
Methane, 593
critical body voltage for ignition, 594, 599
minimum ignition energy, 601
Methyl isobutyl ketone, glove permeation testing, 75
Methyl parathion
adsorption through outer garment fabric/undergarment fabric/skin, 146
chemical structure, 188
distribution on fabrics, 187–203
backscattered electron images, 194–195
contamination procedures, 189–190
determination of pesticide residue, 190
distribution on surface and within fibers, 198, 200
electron microscopy, 191
fabrics tested, 188–189
laundry procedure, 191
residues remaining after laundering, 192, 199
retention on surfaces of fibers, 196, 202–203
solubility parameters, 199
summary of analyses of variance, 197
outer garment fabric sorption, 143
penetration and functional finishes, 180–185
penetration through outer garment fabric/sentinel pad system, 144
physiochemical parameters, 189
residues after laundering, 136, 148
spun-bonded olefin/outer garment-fabric/sentinel pad sorption, 147
Military standard MIL-C-43858: 41, 608
Miran 1A, 23–24
Miran 80, 23–24
Mixer/loaders, 95–97
Moisture vapor transmission rate, 225
Molten metal, 475
cotton, flame retardant fabrics, 438
protection against (see also specific fabrics)
testing fabrics, 476–486
1000-g molten metal splash tests, 482–483
1500-g molten metal splash tests, 481–482
aluminized coats, 482
apparatus with small induction furnace, 477
application of results, 484–485
blister line, 480
complications, 476
different metals, 484
factors affecting splash test results, 478
measuring results, 477–480
method, 476
preliminary testing, 480
relating laboratory results to real world, 485–486
Molten metal (cont.)
testing fabrics (cont.)
time to burn and pain graph, 479

N
National Fire Academy, hand signals, 288
Natural latex gloves (see also Glove materials, testing against metal cutting fluids), 7, 10
chlorine permeation testing, 53-54
formaldehyde permeation, 53, 56
steady-state permeation rates, 13
Navy formula II, 511-512
Neoprene, 51
Neoprene gloves (see also Glove materials, testing against metal cutting fluids), 75-76, 79
Neoprene/natural rubber, permeation rate, 91
Neoprene suit materials, chlorine permeation testing, 53
NFPA (see National Fire Protection Association)
Nitrile-butadiene gloves, formaldehyde permeation, 53, 56
Nitrile-butadiene rubber, 51
Nitrile gloves (see also Glove materials, testing against metal cutting fluids)
variation in permeation resistance, 33
Nitrile rubber gloves, 7, 10, 75-76, 79
Nomex, 3, 389, 491, 495, 498
strength retention, 346-347, 349
Nomex/Kevlar, 340, 505, 507-509, 613

O
Olefin, spun-bonded, sorption, 146-147
Organic solvents, bioassay for glove performance, 214-219
exposure chamber, 216
materials and methods, 215-216

P
Paraquat, 114
Parathion, 114
Patch testing, protective effects of gloves, 70
Penetration, 126, 250, 263
defined, 178, 263-264
resistance (see Seams and closures, penetration resistance)
Penetration testing, 253-255
cell, 255
Percutaneous toxicity, 215
Permeability coefficient, 228
Permeation, 250
chemical protective clothing (see Chemical protective clothing, permeation resistance)
class, 243, 247-248
defined, 178
enhancers, 231
glove materials (see Glove materials, permeation measurement)
infrared spectroscopy (see Infrared spectroscopy, permeation tests)
rate, 7, 51, 229
closed systems, 86-87
dynamic system, 85
scale, 248
versus time plot, 88, 90-91
resistance, 32
Permeation testing (see also Breakthrough time; Data base, pro-
tective effects of glove materials; Glove materials; Work fabrics; specific types of clothing), 51-58, 82-92, 235, 254, 256-260

calculations, 84-85
chlorine permeation testing, 53
closed system calculations, 85-87
computer data base, 88-89
concentration of chemical in collection medium versus time, 87
data flow sequence, 89
formaldehyde, 53, 56
graphical presentation of data, 87-88
hydrogen cyanide testing, 53, 55
limitations, 257
metal cutting fluids, 60-61, 63-64
nomenclature, 83-84
probe tip of photoionization detector, 257
problems when using ASTM Method F 739-81, 82-83
procedure, 52, 83
rate versus time, 88
steady-state rate, 256, 258
summary of data, 57
test apparatus, 258-259
whole glove, 256-257
Pesticides (see also California pesticide applicators' attitudes and practices)
class, effect of on residues remaining after laundering, 169, 171
dermal exposure, 104
penetration (see also Fabric functional finishes, pesticide penetration), 140, 143-147
garment fabric, 143
garment fabric with sentinel pad, 144-145
influence of capillary forces, 137
outer garment fabric/undergarment fabric/dermal pad, 145-146
spun-bonded olefin/outer garment fabric/sentinel pad, 146-147
protective clothing, 95-101
field monitoring, 96-97
heat stress factor, 98-99
information dissemination to users, 100
need for laboratory evaluations, 99
need for more field testing, 98-99
standardized and practical methods, 100
working group, 98
resistance to, 609-610
secondary exposure, 103-104, 111
wetting, 140-142
wicking, 140, 142
work fabrics as barriers, 114-120
Pesticide spraying, protective clothing, 95-96, 121-134
analysis of samples, 124
breakthrough time measurement, 122-123
comfort of trial clothing, 133
contamination of spray operators, 124, 130
correlation between field and laboratory test results, 133-134
design of field studies, 127-130
laboratory evaluation of factors associated with protective efficiency, 131
observed contamination of operators' clothing, 128
penetration of spray liquids through made-up clothing, 124, 132
permeation materials, 131-132
Pesticide spraying (cont.)
relative resistance of materials to
penetration by liquid chemi-
cals, 132
relative spray penetration of test
clothing, 130-131
screening tests, 122-124
selection of protective clothing ma-
terials for field studies, 124-
127
trial spray suits, 129
PFR rayon, 389
Phenol, contaminants after wash ex-
periments, 19
Polybenzimidazole, 340, 349, 613-
614
bulk density retention, 366-367
fabrics, thermal properties, 371-
372
mass retention, 363
thickness retention, 365-366
Polybenzimidazole-blend fabrics,
389-403
acid derivation reduction, 391
chemical reaction, 390
chemical resistance, 393-395
comfort, 395-396
engineering protective fabrics,
396-403
burst strength, 398
char length, 399
contact heat testing time to igni-
tion, 403
firemen’s protective apparel,
400, 402-403
foundry and fire proximity,
400-401
high-temperature gloves, 398-
400
limiting oxygen index, 397
molten iron splash protection,
401
molten metal test apparatus,
401
random tumble pilling, 398
stiffness, 397
thermal protection perfor-
mance, 402
flame resistance, 392
physical properties, 391
programed temperature thermo-
gravimetry, 393
properties, 390
strength at elevated temperature,
394
tensile strength
after immersion in inorganic ac-
ids, 394
after immersion in inorganic ba-
es, 394
after immersion in organic chemi-
cals, 395
thermal stability, 392-393
Polychlorinated biphenyl, decontam-
ation (see Fire fighter turn-
out gear, polychlorinated bi-
phenyl decontamination)
Polyethylene-coated Tyvek, 51
chlorine permeation testing, 53
hydrogen cyanide permeation, 53,
55
Polyethylene terephthalate, solubil-
ity parameters, 199
Polymer glove materials, 59
Polymeric fabrics
effect of source temperature on ab-
sorptance, 345
heat flux absorbed, 344
Polyvinyl chloride, 51
encapsulated suits, storage of, 296
gloves, 7, 10, 219
steady-state permeation rates,
13
hydrogen cyanide permeation, 53,
55
Protection tests, 497
Protective clothing, 32, 103-112
as a hazard, 100
management programs, 236
physical requirements of materi-
als, 57
Puncture testing, glove materials,
61–62

R

Radiant heat, 311, 327, 340
dominant wavelength, 345
flux, 421
protection against, 312–317, 330–
331
amount of absorbed heat, 315
bilateral radiation interchange,
344
color effect, 435
correction factor, 315–316
heat sensors, 324–316
heat source, 312–314, 342
heat transmission factors, 313,
315
quartz and gas-fired panels, 315
specimen mounting, 316
test methods, 312
quartz-faced heater panels, 315,
343
Radiant heat protective clothing ma-
terials, 376–386
apparatus, 379–380
digital contact and air thermome-
ter, 379
dynamic temperature measure-
ments, 380–382
aluminum/wool, 385
nonwoven aluminum, 383
silicon/fiberglass, 384
emissivity, 378, 380, 382
Infrared radiation theory, 377–379
Infrared radiator, 379–380
Infrared thermometer, 379–380
radiated heat effect, 379
test results, 382–386
test rig, 380–381
Ranque Hilsch cooling effect, 548–
549
Reflection index, 376
Resin finishes, 138
Risk assessment, 222, 235, 243
Risk/benefit analysis, 235
Risk information, 243–247

S

Saturated vapor pressure
determination of, 519–521
final solution, 521–522
Seams and closures, penetration re-
stage, 263–275, 611–612
experimental procedure, 264–269
cell sealant material, 267–268
sample garments, 267–269
seam constructions, 267–268
test apparatus, 265
test cell, 266
zipper construction, 268
penetration test results
butyl rubber, 272, 274
chlorinated polyethylene, 272,
274
copolymer of vinylidene chloride
and vinyl chloride, 269–270
laminate of melted polypropyl-
ene, 271
microporous polytetrafluoroeth-
ylene laminated to a fabric,
272
plasticized polyvinyl chloride,
271–274
Viton elastomer, 272, 274
physical properties of liquid chal-
lenge chemicals, 275
Seepage, 294
Shale oil, glove permeation break-
through times, 16
Silicon/fiberglass, dynamic temper-
ature measurements, 384
Skin
- cross section, 223
- direct contact consequences, 237
- exposure, 207
- simulant, 340, 352-353, 406
- structure, 223-225

Soil release finish, 177, 180, 182
Soil-repellent finish, 136, 172-173

Solubility parameter, 32
- and hydrogen bonding class, 35
- correlation with permeation resistance, 36
- expression, 34

Sorption kinetics, adsorption fabrics, 46-48
Splash test, 475
Stoll curve, 475

Strength retention and ignition during exposure, 346-351
Styrene polymer production, chemicals found, 240

dynamic insulation characteristics, 542-546
heat balance equation, 549, 551-554
hot environment protective suit, 537-542
inlet air pressure and temperature interval, 551
moisture uptake and sweat heat loss, 552
physical properties of materials used, 542
Ranque Hilsch cooling effect, 548-549
sensible heat loss, 551
thermal conductance, of complete assembly, 546-548
total heat removal capability of air, 553
total heat to be removed from body in hot environmental work suit, 553
evaluating materials, 614-615

fabric characteristics (see also Fire fighter's turnout gear), 463-473
Derksen curve, 466-467
fabric specifications, 470
flammability, 465
heat protective properties, 465-466
ignition resistance, 465
moisture effects, 464
outerwear/underwear combinations, 469-471
single layers of fabrics, 467-468
thermal inertia, 464
thermal resistance, 464
time-heat relationship, 466
time to injury, 467, 469
total heat transmitted through uniform fabric/underwear combinations, 471
laboratory measurement of performance, 612-614
predicting performance, 358–374
air and fiber conduction, 373–374
air volume fractions of test fabrics, 362–363
apparent thermal conductivity, 368
average temperature, 370
bulk density retention, 366–368
flame-retardant cotton fabrics, 370–371
infrared transmission, 368
Kevlar fabrics, 371–372
mass retention, 363–364
materials, 359–360
method, 360–361
polybenzimidazole fabrics, 371–372
polymer-to-air ratio, 373
predicting thermal protective performance from initial properties, 372–373
specific heat capacities, 368
thermal properties, 368–370
thermal protective performance traces, 361–362
thickness retention, 364–366
tolerance times, 362
weight loss as function of exposure time, 361
Thermal protective clothing fabrics, test methods (see also Lightweight clothing materials, heat protection), 311–339
burn time, 334–336
convective heat, 331
exposure of materials to intense heat, 328–329
fabric integrity, 336–337
factors that influence burn injury, 328
flames (see Flames, protection against)
function, 327
hole formation, 329, 335
nature of intense heat hazard, 329, 330
pain time, 334–336
radiant heat, 312–317
heat sensors, 314–316
heat source, 312–314
specimen mounting, 316
relevance of test results, 337–338
second-degree burn results, 335–336
sensor response, 334
skin stimulant sensors, 336
Thermal protective performance rating, 491–494
test, 358, 360, 487, 613
Thermistor, 95
Toluene, 214–215
blood concentration with protective gloves, 217
glove permeation, 7, 9, 11–15, 75
glove thickness and density, 12–13
radiolabeled tracer study, 13
rate, 12
Toxicity scale, 246
1,1,1-Trichloroethane, 214–215, 217
Turnout coat (see Fire fighter’s turnout gear)
Two-chamber chemical permeation test cell, 61
Tyvek, Saranex laminated, 277–278
encapsulating suit, 279–280
exhaust valves, 281, 284
face piece materials, 277
glove attachment, 281
knee reinforcement, 279–280, 282
limited-use garment, 285
protection factor, 282–284
recovery time, 283, 285
suit weight and noise level, 281, 284
ventilating vest, 280, 283
layered structure, 278
permeation data, 278
PERFORMANCE OF PROTECTIVE CLOTHING

U

U.S. Navy protective clothing program, 497-512
fire pit tests, 500, 502-504, 507-510
body burn percentage versus total heat, 508
burn incidence for body regions, 509
burn level and paper tape activation temperature, 504
facility, 500, 503
individual total heat, 507
number of garments tested, 504
test mannikins, 500, 503-504
thermal shrinkage, 510
uniform design effects, 509
fire resistance, 499-505
flame impingement, 500-502, 505-507
temperature rise in skin simulant, 506
materials, 499
Navy formula II, 511-512
paper tape-leather patch calibration procedure, 512
total heat protection, 510
vertical flammability performance, 505

V

Viton, 29

W

Water repellent finish, 177, 179-180
effect on barrier properties of fabrics, 182-185
Water vapor permeability, 151
Wetted cover, 515
evaporative heat loss from, 518-519
heat balance, 517
Wheeler's equation, modified form, 47
Wool, 405-419, 439
fabrics, 406
flame exposure, 408-413
air gap effect, 408-410
fabric construction and fiber type, 408, 411-412, 417-418
moisture effect, 412-413
repeatability and reproducibility, 408-409
heat protection, 468
melted, heat transmission factors, 313
molten metal splash, 413-416, 483
fabric construction and fabric type, 413, 415-416, 418
reproducibility, 413-414
physiological stress, 418-419
test methods, 407, 416-417
Work fabrics, as pesticide barriers, 114-120
Duncan's multiple range for disintegrations per minute, 118-119
pesticides tested, 115-116
protocol, 116-117
split-plot ANOVA table, 117
test fabrics, 115
test procedures, 115-117
two-way interactions, 117-118

Z

Zetex, 449, 614-615
abrasion testing, 454
development of safety clothing, 450-454
cut resistance, 451
glove design changes, 451
irritation problems, 450
glove testing, 451-454
molten metal testing, 454-459
aluminized, 458-459
<table>
<thead>
<tr>
<th>Subject</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>apparatus</td>
<td>455</td>
</tr>
<tr>
<td>average calorimeter temperature rise</td>
<td>457</td>
</tr>
<tr>
<td>grading system for damage</td>
<td>456–457</td>
</tr>
<tr>
<td>maximum rate of heat flow</td>
<td>457</td>
</tr>
<tr>
<td>splash evaluation</td>
<td>459</td>
</tr>
<tr>
<td>visual ratings</td>
<td>456</td>
</tr>
<tr>
<td>properties</td>
<td>450</td>
</tr>
<tr>
<td>Zippers</td>
<td></td>
</tr>
<tr>
<td>pressure sealing</td>
<td>286</td>
</tr>
<tr>
<td>storage of</td>
<td>295–296</td>
</tr>
<tr>
<td>testing seal</td>
<td>294–295</td>
</tr>
<tr>
<td>Zirpro flame-retardant treatments</td>
<td>405, 417–418, 439</td>
</tr>
</tbody>
</table>