Subject Index

A

Aging of steel (see Steel, aging of)
Alignment
disk bend test, 83
wire tensile test, 186
Alloys
A286 steel, 290
A302B steel, 308
A508 steel, 308
A533B-based steel, 308
aluminum, 6061-T651, 353
chromium-molybdenum-vanadium-niobium steel, 325
copper-aluminum, 141
copper-beryllium, 112
copper-manganese, 141
copper-nickel, 141
copper-nickel-beryllium, 206
HT-9 steel, 206, 290, 305
molybdenum-modified steel, 5
nickel-base steel, 5
nickel-chromium steel, 92
niobium-modified steel, 5
Path B steel, 5
Zircaloy, 171
Aluminum, 141, 353
Aspect ratio (AR), 27, 85
ASTM Cooperative Test Program, 345
ASTM Standards
E9: 360
E23: 328
E178: 146
E208: 341
E399: 318
E606: 276
E647: 261, 268
E813: 355
ASTM Subcommittee E10.02: Behavior and Use of Metallic Materials in Nuclear Systems, 1
Axisymmetric loading, 5

B

Ball microhardness test (see Microhardness tests)
Beam interference microscopy, 122, 123-124, 127-130
Bench marking, disk bend test, 86, 88
Beryllium, 112, 206
Biaxial loading, 23, 107, 174
Brass, 132
Breeder reactors (see Reactors, breeder)
Buckling of test specimens, 85, 261, 276
Bulk material behavior (see Macrobehavior versus small-scale specimen behavior)

C

Center-cracked tension specimen
ASTM Standard E 647: 261
Charpy V-notch specimen, 92, 305, 325, 353
rebuilding of, 361
Chromium, 5, 67, 92, 311, 325
Closed-end bulge/burst specimen, 174
Cold-worked steel (see Steel, cold-worked)
Compact tension specimen, 253, 290, 353
ASTM Standard E 813: 355
rebuilding of, 361
Compound specimen, 261, 353
Compression specimen
ASTM Standard E 9: 360
Copper, 112, 141, 206, 241
Crack arrest (see Crack growth; Fracture toughness test)
Crack growth
in alloys A286/HT-9, 290
in center-cracked tension specimen
Type 304 steel, 261
in Charpy V-notch specimens
A302/A508/A533B-based steel, 305
in compact tension specimen
Type 316 steel, 290
fatigue tests, 59
in notched specimen
nickel-chromium steel, 92
Type 316 steel, 220
pre-cracking effects, 290, 305
in reactor pressure vessel steels, 305, 339
three-point bend specimens,
A302/A508/A533B-based steel, 305
thin specimens, Type 316 steel, 220
Crack initiation, 220
Crack propagation (see Crack growth)
Crack tip, rebuilt specimens, 353
Creep properties, Type 316 steel, 220, 252
Curvilinear tensile specimen, 174

D

Data processing, 22, 87, 117, 271, 307 (see also Finite element analysis)
Deformation
in disk bend tests, 84-85
in microhardness test, 112
Disk bend tests (see also Electron microscopy, disks)
apparatus diagrams, 8, 20, 52, 68
applications, potential, 88, 91
buckling of disk, 85
centering of disk, 83
disk preparation, 23
fatigue, 59
MIT developed, 17, 50
of Path B alloys, 5
of Type 316 steel, 17, 50
of Type 446 ferritic steel, 66
summary of status, 89
Dislocation channeling, 171
Dislocation loops, 141
Displacement rate tests, 233
Ductile-brittle transition temperature
A302B/A508 steels, 305
A533B-based steel, 305
ASTM Standard E 208:341
9Cr-1Mo-V-Nb steel, 325
Ni-Cr steel, 92
Type 302 steel, 50
Type 410 steel, 63
Ductility
irradiated steel, 5, 17, 50, 66
irradiated Zircaloy, 171
Path B alloys, table, 10
Duplex specimens, 351

E

Electrical discharge machining (EDM), 17, 175, 355
Electrical potential monitoring, 261
Electron microscopy
- disks, 5, 17, 50, 66, 112, 141
- photos
 - crack growth, M30-200-Sn steel, 101
 - crack initiation, A533B steel, 319
 - disk bend test specimens, 25, 64, 72-74, 76, 77
 - dislocation channels, Zircaloy, 181
- fractures, Type 304 steel, 166
 - indentation, copper-beryllium alloy, 125, 126
 - stretch zone, A302B steel, 314
 - tapered gage, titanium wire, 192

Electropolishing, 186
- table, 191

Elongation, 161, 171, 186, 201, 220, 252

Embrittlement (see also Ductile-brittle transition temperature)
- radiation-induced, 66
- thermal-induced, 92, 325

Energy, lower/upper shelf, 305, 325

Expanding mandrel specimen, 174

Ductile-brittle transition temperature
- Fracture energy transition curves, 101, 102
- Fracture toughness tests
 - aluminum, 6061-T651, 353
 - apparatus, 293, 308, 342
 - ASTM Standard E 813, 355
 - steels
 - A286 alloy, 290
 - 9Cr-1Mo-V-Nb, 325
 - HT-9 alloy, 290, 305
 - reactor pressure vessels, 325
 - Type 316, 290
- Fusion reactors (see Reactors, nuclear fusion)

G

Grain size
- effect on ductile-brittle transition temperature
 - Ni-Cr steel, 92
- effect on mechanical properties
 - Types 304/316 steel, 161
- effect on tensile properties
 - nickel, niobium, vanadium, and titanium wires, 186

F

Fatigue crack growth (see Crack growth)
- Fatigue testing (see Disk bend tests, fatigue; Thermal fatigue)
- Fermi-type specimens, 208
- Finite element analysis
 - disk bend tests, 17, 50, 83, 87-88
 - fracture toughness tests, 354
 - simulation, load/deflection curves, 17
- Flaws, reactor pressure vessels, 305
- Fracture, brittle, 92 (see also Crack growth; Crack initiation; Ductile-brittle transition temperature)

H

Hall-Petch relation, 161
- Hanford Engineering Development Laboratory (HEDL), 66
- Helium, irradiated Path B alloys, table, 7

I

Impact energy data, 353
- Indentation geometry, microhardness test, 112, 141
- Indentation hardness tests, 233
 - apparatus diagram, 238
Instron tensile testing machine, 61, 186, 292

Interferography
differential interference, 123–124, 127, 129
multiple beam, 122, 130

Irradiation
effect on creep properties, Type 316 steel, 252
effect on ductility
Path B/nickel-base alloys, 5
Type 446 steel, 66
effect on fracture toughness
aluminum, 6061-T651, 353
Type 316 steel, 290
effect on mechanical properties
copper alloys, 112
Type 302 steel, 50
Type 316 steel, 220
effect on microhardness, copper alloys, 112, 141
effect on plane strain/stress, Zircaloy, 171
effect on reactor pressure vessel steels, 339, 359
effect on tensile properties
nickel, niobium, vanadium, and titanium wires, 186
Type 316 steel wires, sheet specimens, 201
copper-nickel beryllium/HT-9 alloy sheet specimens, 201
effect on thermal fatigue, Type 316 steel, 276

Machining, electrodischarge (see Electrical discharge machining)

Macrobehavior versus small-scale specimen behavior
crack arrest tests, 339
disk bend tests
bench marking, 86, 88
finite element analysis, 36
fatigue crack growth, 220
fracture toughness, 353
impact tests, 325
load relaxation tests, 233
microhardness tests, 141
tensile properties tests, 201, 220, 233
table, 178
thermal creep tests, 220
thermal fatigue tests, 276
Manganese, 66, 141
Massachusetts Institute of Technology (MIT), 17, 50

K
Knoop microhardness, 27

L
Lapping, precision machine, 23
Linear elastic fracture mechanics (LEFM), 21
Load deflection curves, 9, 53–56, 60, 70, 72–74, 99–100
Load relaxation tests, 233
Loads
axisymmetric, 5, 83
biaxial, 23, 66, 107, 174
central, 17
compressive, 233
cyclic, 233, 276
fatigue, 276
indentation, 141
low level, 141
transverse wedge, 342
uniaxial tensile, 233
Matrix hardening, 6
Mechanical properties
 disks
 chromium-molybdenum, 66
 copper-beryllium, 112
 Type 316 steel, 17, 50
 Type 446 steel, 66
nuclear reactor components, Zircaloy, 171
thin foil specimens
 Type 304/316 steel, 161
thin specimens
 Type 316 steel, 220
thin wires
 copper, 233
 various metals, 186
Microhardness test
 antivibration stand, 144
 apparatus diagram, 115
 copper/copper alloys, 112, 141
Microstructure (see also Electron microscopy, photos; Interferography)
 brass, 132
 copper-nickel-beryllium (alloy 3), 215
 disks, electron microscopy, 26, 90
 HY-9 steel, 214
 Path B alloys, 5
 Type 316 steel, 23, 213
Miniaturized disk bend test (MDBT) (see Disk bend test)
Molybdenum, 5, 325
Notched specimens, 92, 220, 261, 339 (see also Charpy V-notch specimen)
Nuclear fusion reactors (see Reactors, nuclear fusion)

O
Optical comparator, 83
Optical metallography, 140

P
Parameters, fracture mechanic, 305
Photomicrographs (see Electron microscopy, photos)
Plane strain, 174, 342
Plasticity
 disks, electron microscopy, 85
 welded steel specimens, 264
Press-fit specimens, 361
Pressure vessels, 305, 339, 353
Protons, 16-MeV, 186
Punch tests, 92, 112
 apparatus diagram, 95, 131
Punching, specimen production, 201

R
Radiation hardening, 186
R-curve analysis, 299
Reactors
 breeder, 5, 291
 components, table, 173
 nuclear fusion, 1, 66, 112, 261, 276, 305, 353
 pressure vessels, 305, 339, 353
Rebuilt specimens
 Charpy V-notch, 361
 compact tension, 361
Reproducibility band, 84
Rupture time, creep specimens, 254

N
Neutrons
 Be, 186
 14-MeV, 112, 114, 220
 T, 186
Nickel, 186
 in copper alloys, 141, 206
 in steel alloys, 5, 67, 92, 206
Niobium, 7, 186, 325
S

Scanning electron microscopy (see Electron microscopy)
Shear punch test, 112
Sheet-type tensile specimen, 201, 220
Sideband tensile specimen, 174
Specimens
center-cracked tension, 261
Charpy V-notch, 92, 305, 325, 353, 361
closed-end bulge/burst, 174
compact tension, 253, 290, 353
compound, 261, 353
compression, 360
curvilinear tensile, 174
disks, transmission electron microscopy, 5, 17, 50, 66
duplex, 351
expanding mandrel, 174
Fermi-type, 208
gamey of, 327
table, 174
notched, 92, 220, 261, 339
press-fit, 361
rebuilt
Charpy V-notch, 361
compact tension, 361
sheet-type tensile, 201, 220
sideband tensile, 174
thin foil, 161
three-point bend, 174, 305
welded, 261
wire tensile, 186, 233
Stainless steel (see Steel, stainless)
Steel
A286, 290
A302B, 308
A508, 308
A533B-based, 308
aging of, 5, 67, 92, 252, 310
austenitic (see Steel, stainless)
cold-worked, 5, 206, 252, 290
9Cr-1Mo-V-Nb alloy, 325
ferritic, 66, 92, 305, 325
HT-9, 290
Linde 009, 308
martensitic, 305
microstructure of, 23, 90, 92, 166, 314, 319
nickel-chromium alloys, 92
P-doped, 94
pressure vessel, 305, 339
Sn-doped, 94
stainless, 17, 50, 66, 161, 201, 220, 233, 252, 276, 290
Type 302, 50, 85
Type 304, 161
Type 316, 17, 23, 161, 201, 220, 233, 252, 276, 290
Type 446, 66
Strain
disk bend tests, 86
model development, 354
plane type, 171
small punch tests, 92
Stress (see also Loads)
axisymmetric, 6
flow type, 115
microcleavage fracture, 311
uniaxial tensile, 89, 112
yield, 80, 112, 220
0.2% proof strength, 161
Stretch zone analysis, 313
Subsized specimens geometry, 174–175
Surface softening, copper/copper alloys, 141
Surveillance, nuclear reactors, 253

T

TEM disks (see Electron microscopy, disks)
Temperature (see also Ductile-brittle transition temperature)
elevated
aging of steel (see Steel, aging of)
effect on A286 steel alloy, 290
effect on Charpy V-notch steel specimens, 305
effect on nickel-base steel alloys, 5
effect on reactor pressure steels, 347
effect on three-point bend steel specimens, 305
effect on Type 304 steel, 261
effect on Type 316 steel, 220, 276, 290
effect on Zircaloy, 171
lowered
 effect on crack arrest, reactor pressure vessels, 347
room
 effect on copper, 233
 effect on Type 316 steel, 233
 effect on Type 446 steel, 70
Temperature control equipment, 240
Tensile tests (see Instron tensile testing machine; Ultimate tensile strength; Uniaxial tensile behavior; Wire tensile tests)
Thermal creep tests (see Creep tests)
Thermal fatigue, 276
 apparatus diagram, 279, 283
Thicknes, steel specimens, 161, 220, 261
Thin foil specimen, 161
Three-point bend specimen, 174, 305
Titanium, 186
Tools for subsize specimens, 283
Transmission electron microscopy (see Electron microscopy)
 Two-parameter criteria, 305
Uniaxial tensile behavior
 biaxial tensile behavior comparison, 107
disk bend test comparison, 17, 38, 66, 89
 punch test comparison, 92, 107
table of test comparisons, 171
thin wire testing, 233
U.S. Fusion Program, 5
V
Vacuum, 220, 276
Vanadium, 186, 325
Vibration control equipment, 141, 240
Vickers microhardness test, 141
W
Welded specimens, 261
Wire tensile tests, 186, 233
 apparatus diagrams, 188, 193, 235, 238
Work hardening, 112, 161, 186
Y
Yield strength
 crack growth, steel, 311, 344
 indenter loads, copper/copper alloys, 141
 sheet specimens, steel, 201
tensile loads, wire, 186
thin specimens, steel, 220
Z
Zircaloy, 171
Zirconium, 171