Subject Index

A

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aas in-situ tests</td>
<td>209-210</td>
</tr>
<tr>
<td>Analytical model technique</td>
<td>432, 438</td>
</tr>
<tr>
<td>Andersen's procedure</td>
<td>342, 345, 349-351</td>
</tr>
<tr>
<td>Arabian Gulf soils</td>
<td>413</td>
</tr>
<tr>
<td>ASCE conference</td>
<td>41</td>
</tr>
<tr>
<td>ASTM Standards</td>
<td></td>
</tr>
<tr>
<td>D 422: 385</td>
<td></td>
</tr>
<tr>
<td>D 653: 12</td>
<td></td>
</tr>
<tr>
<td>D 1586: 517</td>
<td></td>
</tr>
<tr>
<td>D 2435: 457</td>
<td></td>
</tr>
<tr>
<td>D 3441: 34</td>
<td></td>
</tr>
<tr>
<td>D 4186: 457</td>
<td></td>
</tr>
<tr>
<td>field vane shear test</td>
<td>35, 206</td>
</tr>
<tr>
<td>Attraction, in-situ</td>
<td>44, 47-49</td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beaufort Sea clays</td>
<td>487</td>
</tr>
<tr>
<td>Bering Sea sediment liquefaction</td>
<td>454</td>
</tr>
<tr>
<td>Borehole shear testing</td>
<td>140</td>
</tr>
<tr>
<td>Borehole swell</td>
<td>150</td>
</tr>
<tr>
<td>Bridge site investigation</td>
<td>515</td>
</tr>
<tr>
<td>stratigraphy</td>
<td>522-523</td>
</tr>
<tr>
<td>British Standards</td>
<td></td>
</tr>
<tr>
<td>BS 1377–1975: 35</td>
<td></td>
</tr>
<tr>
<td>BS 5930–1981: 35</td>
<td></td>
</tr>
<tr>
<td>Building Research Establishment</td>
<td>21</td>
</tr>
<tr>
<td>Bulk density, marine sediment</td>
<td>154, 163</td>
</tr>
</tbody>
</table>

C

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcarenites</td>
<td>415, 416, 418</td>
</tr>
<tr>
<td>Calcareous ooze testing</td>
<td>114, 116, 118-121</td>
</tr>
<tr>
<td>Calcareous sediments cementation and grain crushing</td>
<td>241-242, 243</td>
</tr>
<tr>
<td>Calcilitites</td>
<td>415</td>
</tr>
<tr>
<td>Calcisiltites</td>
<td>415, 419</td>
</tr>
<tr>
<td>Carbonate rocks</td>
<td>413</td>
</tr>
<tr>
<td>Cementation, calcareous sediments</td>
<td>241-242</td>
</tr>
<tr>
<td>Cemented beach sands</td>
<td>306, 308, 311</td>
</tr>
<tr>
<td>Cementing agents</td>
<td>306</td>
</tr>
<tr>
<td>Cesium-137</td>
<td>137, 157, 158</td>
</tr>
<tr>
<td>Clays</td>
<td></td>
</tr>
<tr>
<td>Beaufort Sea</td>
<td>487</td>
</tr>
<tr>
<td>classification</td>
<td>65-66</td>
</tr>
<tr>
<td>cyclic degradation</td>
<td>336</td>
</tr>
<tr>
<td>deformation</td>
<td>341, 351, 505-506</td>
</tr>
<tr>
<td>failure</td>
<td>267-268, 270, 271</td>
</tr>
<tr>
<td>Gault</td>
<td>30, 31</td>
</tr>
<tr>
<td>Gulf of Mexico</td>
<td>363</td>
</tr>
<tr>
<td>illitic "red."</td>
<td>84, 88</td>
</tr>
<tr>
<td>Kringalik</td>
<td>488, 505-508</td>
</tr>
<tr>
<td>testing</td>
<td>492-499</td>
</tr>
<tr>
<td>undrained strength</td>
<td>508-510</td>
</tr>
<tr>
<td>yield behavior</td>
<td>499-505</td>
</tr>
<tr>
<td>Nelson Farm</td>
<td>295</td>
</tr>
<tr>
<td>overconsolidated</td>
<td>259</td>
</tr>
<tr>
<td>peak shear stress ratios</td>
<td>271-272</td>
</tr>
<tr>
<td>pelagic</td>
<td>114, 115, 117, 251</td>
</tr>
</tbody>
</table>
plastic Drammen, 338, 350
quick, 50, 52, 53
rod shear testing, 258
saturated, 48–50
silty, 50, 52, 295
soft marine (See also Soil, soft cohesive characteristics)
 cone penetrometer testing, 29
degradation, 360
 index properties, 353–354
 shear modulus of, 352
stage testing, 142
undrained behavior, 56, 67
Cohesion, 319
Compressibility, soil, 527–531
Compression creep testing, multistage triaxial, 479, 482
Compression strength, 415–418, 420
Compression testing, unconfined, 201, 222, 225, 528–529
Cone penetration testing, 441
 Beaufort Sea clay, 491, 492, 495–496, 499–500, 508–512
downhole, 55, 57
Cone penetration testing
 Iranian soil, 443, 447–448
 Norton Sound and Bering Sea, 455, 457, 461
 offshore California silts, 55
 soil strength measurement, 170–173
 static, 41–50
Cone penetrometer
 fall, 213–214
 jetting system, 129–130, 136–137
 lightweight 12-m, 125
 static, 126
Cone penetrometer testing, 14, 17, 27, 29–30
 standards, 34–35
Cone point resistance, 41, 62–64, 67–70
 in soft clay, 75–76
Consolidation, 339, 340
 oedotriaxial, 326, 327
 settlement and, 390–392
Consolidation stress, 262–266, 270
Consolidation testing, 201, 256, 323
Consolidation theory, linear, 79, 80
Corals, 415
Creep, 294, 339, 473 (See also Deformation)
 Creep testing, multistage, 477, 478, 481, 482, 485
Cyclic degradation of clay, 336
Cyclic loading, 243, 339–340
 effect, 320
 pore-pressure buildup during, 322–323
 slow, 367, 374–376
 static, 367
testing, 325, 349–350
Cyclic strength testing, 226–231
Cyclic undrained testing, 327–328
Deep-Sea Drilling Project (DSDP), 197–198, 200, 202–203
 shear strength testing, 253, 255
 ship, 156
testing technique, 210
Deformation
 bridge site, 527–531
 Kringalik clay, 505–506
 warm permafrost, 473
Densitometer, gamma-ray, 154
Dilatancy parameters, 330–331
Dissipation testing, 76–81
Doppler penetrometer, expendable
 components of, 105–109
deep ocean sediment measurements, 101
Doppler principle, 102
Drained cyclic testing, 329
Drilling, 16
 disturbances caused by, 24–27
 rotary, 197–198
Drill ship wireline in-situ testing, 21
Drill string sampling, 197–198
 push sampling through, 198–200
Earthquakes
accelerations, 464
liquefaction and, 226–231, 455, 461–463, 470
loading, 220, 230, 381
Empirical correction method, 428–431, 438
factors, 436–437
European Communities’ Joint Research Centre, Commission of, 21

F
Field testing (See also In-situ testing; specific tests)
of Iranian soil, 443–444
vane testing, standards, 35–36
Florida, marine environment testing, 140
Friction sleeve resistance, 61, 63
Friction testing, smooth-plate, 145, 148, 151

G
Gas charging, 237–240, 243
Geological Survey, U.S., 130
National Oceanic and Atmospheric Administration (NOAA) ship testing, 455
testing, 202, 203, 218, 220
unpublished study, 210–211
Geotechnical site investigations, 488
philosophy, 510–512
techniques, 490–492
Grain crushing, calcareous sediment, 241–242
Gravity platform foundation stability, 331–334
Gulf of Mexico clay, 363

H
Hurricane Camile, 186–187
Hvorslev strength theory, 432, 434, 438
Hydraulic piston corer, 200

I
Indonesian soil strength testing, 448–452
In-situ shear strength equipment, 18–19
In-situ strength and cone penetration testing, 66–68
In-situ testing, 542–543 (See also Field testing, specific tests)
bridge site, 517–522
description and standardization, 31–36
disturbances caused by, 27–28
equipment, 29–31
Iranian soil, 443
of marine soil strength, 15–19
quality assurance, 24–31
strength degradation in, 31–32
In-situ versus laboratory testing
Arctic marine soils, 512
strength testing, 425, 440
Iranian soil strength testing, 441–448

K
Kringalik Plateau soil testing, 492–499

L
Laboratory testing, 543–545
Iranian soil, 444–446
marine soil strength, 181
Laboratory test values, correcting, 428–438
Laboratory versus in-situ testing
Arctic marine soils, 512
strength testing, 425, 440
Lake deposit, cone penetration testing, 50–51
Limestone, 415
Liquefaction
analyses, 226–228, 230, 461–467
assessment, 467–469
Bering Sea sediment, 454
resistance, 467–469
of silts, 387, 389, 394

Loading
critical level of repeated (CLRL),
229–230
platform geometry and, 331
Louisiana soil, 72

M
Mackenzie Delta, 489
Marchetti dilatometer testing, 146, 150
from barge, 515, 516, 519–522
Marine cores, simulated, 154
Marine environment, shallow borehole
shear testing, 140
Marine geotechnology, 184–185
industry and university research,
185–189
Marine sediments (See also Sands;
Silts)
composition, 13
core splitting, 210–211
gases, 155–156
in-situ testing, 11
poro-elastic properties, 397
properties, 154–155
soft clay, 352
strength testing, 181, 440
three-dimensional stress relaxation
behavior, 294
types, 12–15
Menard pressuremeter testing, 146,
150
from barge, 515, 516, 517–518
Miniature vane testing, 188
Mississippi delta
offshore clay testing, 83
shear modulus of soft marine clay,
352
Mohr-Coulomb failure criteria, 151–
152, 432
Mud vulcanoes, 394
Muds, hard carbonate, 415
Mudslide, 394

N
Naval Civil Engineering Laboratory
(NCEL), U.S.
sampling procedure, 218–220
seafloor testing, 113
Normalized soil parameters (NSP) ap­
proach, 223–226, 228, 230, 242
Norton Sound, AK, testing, 125–126,
130–132
Norwegian Geotechnical Institute,
218, 220–221
Norwegian Petroleum Directorate
(NPD), 331, 333

O
Ocean sediment measurements, 101
Ocean Thermal Energy Conversions
(OTEC), 185
Offshore cone penetration testing, 55
(See also Cone penetration
testing)
Offshore deposit testing, 50
Offshore in-situ strength testing
methods, 20–21
Offshore site investigations, 13
Overconsolidation, 394
stress, 390
Overconsolidation ratio (OCR), 392,
428, 438
marine soil, 15
silts, 59–60

P
Pelagic sediments, 251–256
Penetration resistance and soil
strength, 105
Penetration, testing, standard, 17, 146
Penetrating Testing (ESOPT) Conference, European Symposium on, 41
Penetration Testing in Europe, Subcommittee on Standardization of, 34–35
Permafrost, 488, 490
 warm, 473
Permeabilities, 83
Piezocone penetration testing, 72
Piezometer measurements, 83
Pile installation effects, 258–259
Plasticity, clays, 304, 305
Plate load testing, 17
Platform geometry and loads, 331
Pocket penetrometer testing, 213, 215, 443
Point load index, carbonate rocks, 413
Point load testing, 413, 418–420
Pore-pressure, 89–91
 buildup during cyclic loading, 322–323
 components, 320–321
 cumulative, 331
 dynamic, ratio technique, 497
 equation, 321
 in soft clay, 75–79
 time-dependent dissipation, 92, 94–97
Pore suction effects, 27, 28
Pore-water pressure
 buildup, 392
 negative, 393
 response, 386–389
 transducers, 384
 wave loading and, 397–398
Pore-water salinity, 219
Poro-elastic properties, marine soils, 397
Port Hueneme, CA, testing, 126, 132–133
Pressure release disturbance in simulated marine cores, 154

Pressuremeter and Foundation Engineering, The, 474
Pressuremeter testing, 14
 of permafrost, 474, 476–478
 self-boring, 16, 22–24
Probe deployment system, 19–24
Push sampling, 55, 167, 261
 through drill string, 198–200

R
Ramberg-Osgood-Masing model, 364–365, 369–373, 377
validity, 378
Remote vane shear testing, 491–492, 497, 508–509
Residual pore-pressure technique, 432–435, 438
Resistivity probes, 18
Resonant column testing, 354–355, 370–374
Rock
 Clark and Walker classifications, 414–415
 Middle East types, 414–415
 uniaxial strength, 413
Rod shear testing, 258
Rod-soil rupture, 268–269

S
Sample
 handling, storage and, 200–203
 testing, 203–231 (See also specific tests; Sampling methods)
Sample tube plugging, 166
 partial, 174–176
 quality and, 171–175
Sampling mathematical model, 169–170
Sampling methods
 bottom platform, 193–197
 disturbance, 426
 drive, 261
gravity driven, 189–193
improved, 187
offshore, 167–169
percussion sampling, 166, 167, 186,
197–198
perfect, 426
push sampling, 55, 167, 198–200,
261
rotary drilling, 197–198
Sands (See also Sediments; Silts)
calcareous, 441
cemented beach static behavior, 306
classification, 65–66
frozen, 475, 485–486
undrained behavior, 56, 67
Sandia National Laboratories, U.S.
In Situ Heat Transfer Experiment
(ISHTE), 86–87, 88, 92, 95
Subseabed Disposal Program, 84,
86, 295
San Francisco Bay, penetration testing,
126, 133–134
SEACALF piezocone testing, 29–30
Seafloor
geotechnical properties, 101
jacking system, 56, 57
system, 16, 21–22
in-situ strength testing, 22–23
Sediment strength testing program,
425
Sediments (See also Marine Sedi-
ments; Sands; Silts)
deep ocean, 101, 251
sensitivities, 113
sound velocity, 112–113
testing, sites, 114–120
disturbance/environmental factors,
539–541
northern Bering Sea, liquefaction
of, 454
overconsolidated, 460–461
Self-boring pressuremeter testing,
491–492, 497–501, 506–507
Settlement and consolidation, 390–
392
SHANSEP procedure, 187, 189,
235–236, 432–433, 438
analysis of pelagic clays, 253
Shear modulus for soft marine clays,
352
Shear resistance, ultimate, 304
Shear strength behavior, in multistage
testing, 275–285
Shear strength model, 319–320
Shear strength parameters, 330
effective stress-based, 318
expressions, 43–44
from static cone penetration testing,
41
Shear strength properties, pelagic sedi-
ments, 251
Shear strengths, undrained
at bridge site, 523–527
clays, 354, 355
deep-sea sediment cores, in-situ, 83,
187
Shear stress ratios, reconstituted clays,
271–272
Shear testing
direct, 444
direct simple (DSS), 221–224, 338
drained, 149
simple, 216–226
Silts (See also Sands; Sediments)
California offshore, 55
categorization, 65–66, 381
clayey, 56, 118, 121 (See also Clays)
cone penetration testing, 55, 62–65,
68–70
Danby, 385, 392–393
defORMations, 392, 394, 395
failure, 389
in-situ strength, 66–68
Madison, 406, 408, 410
pleistocene, 58
properties, 58, 385
response to wave loads, 381
sandy, 56
Yukon, 392–393
Simple strength index testing, 203–204, 205
Site evaluation process, 426 (See also
Bridge site investigation; Offshore site investigations)
Soil (See also Clays; Marine sediments; Sands; Sediments; Silts)
brittleness index, 312, 316
crude-grained, 400–402
cone penetration of, 46–47
fine-grained, 402–404
piezocone penetration testing, 72
pore-elastic properties, 397
soft cohesive characteristics, 72–73
Soil classifications, 309–310, 311
Douglas and Olsen classification, 66
Schmertmann classification, 65
Unified, 295
Soil failure, 26, 102
clays, 267–268, 270, 271 (See also
Clays)
Soil Mechanics and Foundation Engineering, International Society
of, 34–35
Soil Mechanics in Offshore Engineering Conference, 185
Soil parameters, variations from triaxial testing, 330–331
Soil property characteristics, 425
Soil-rod friction, 260–261
Soil stage testing, 141, 142
Soil strength determination theory,
102–105
Soil type and stress relaxation, 303–304
Stage testing, 141, 142, 146, 151
Standard penetration testing (SPT),
441
borings, 515, 516, 517
Indonesian soil, 450–451
Iranian soil, 443, 447–448
Static drained testing, 329
Static shear testing, 324
Static undrained testing, 325–326
Storm conditions, 330, 331
Storm waves, 381–382, 516 (See also
Wave action; Wave loading)
cyclic shear stresses, 464, 465, 466
liquefaction and, 463
pore-pressure and, 470
Strength, dynamic and static, 356–360
Strength degradation, 31–32
Strength measurement
validity of, 231–236
variables, 541–542
Strength parameters testing, 203–204
Strength testing, laboratory versus in situ, 440, 545–546
Stress
applied normal, 152
effects, 302–303, 304
lateral, 527
octahedral shear, 297–298, 299–305
preconsolidation, 531–534
shear, 336
Stress history and normalized soil engineering properties (See
SHANSEP procedure)
Stress relaxation behavior, three-dimensional, 294
Sunshine Skyway Bridge, 515, 522
replacement, 141, 146–150, 152
Tampa Bay, borehole shear testing, 144, 146–148
Tension by platforms, foundations of, 336
Testing, integrated, 363
Torvane testing, 213, 214–215, 443
Triaxial compression testing
STRENGTH TESTING ON MARINE SEDIMENTS

UC, 444–46, 448
UU, 451–452

Triaxial shear testing; drained, 311, 315
Triaxial testing, 18
 consolidated undrained (CU), 27, 201, 216, 220, 222, 495, 499, 510
 correcting results, 432
cyclic, 318, 458–460
deep-sea sediment, 188
 in-situ UU, 19
 multistage, 274
 Konder’s technique, 277, 281, 283, 285, 286, 289
 rational procedure, 277, 286–289
 of permafrost, 478–484
 of soft marine clay, 355–356
 static, 216–226, 318
 stress-based shear strength, 318
types, 322–325
 unconfined compression, 201, 222, 225
 unconsolidated undrained, 27, 201, 222, 225, 494–495, 499, 510
 undrained, 146
 undrained compression, 275, 279, 286, 289

 variations in soil parameters from, 330–331

V

Vane shear probe measurements, 92
Vane shear testing, 14, 441, 443, 451
 (See also Miniature vane testing; Remote vane shear testing; Torvane testing)
Vibratory samplers, 196–197

W

Wave action and sediment densification, 507
Wave loading, 220, 230, 330, 455, 461
 liquefaction and, 469, 470
 silts response to, 381
 soil deformation and, 387–398
Wave tank, 382, 383
Wave tank testing, 385, 386–392, 394
Wave-soil interaction, 386–387
Wireline driven (percussion) sampling, 166, 167, 198

Y

Yield behavior, clay, 499–505