Subject Index

A

a-c field measurements, crack shape monitoring (see Crack shape, monitoring, a-c field measurements)
a-c potential drop systems, 87, 169
Aircraft engine disk alloys, 148, 150
Aliasing phenomenon, 25
Aluminum alloys
Fracture surface, 256
R-curves, 258
ANSI X3.4-1977, 22
ASTM standards
E 399-83, 96, 253, 272
E 647-81, 154-155, 174, 184
E 647-83, 133, 141, 209, 213, 218, 222
E 813-81, 169, 208, 253, 261, 272, 281
E 647-78T, 111

B

BASIC programming, 27, 31-32, 41
Beach marks, 124, 126
Blunting line, 257
 Measured and calculated, 286
BS 5762, 250

C

CALEM, 275
Center-cracked-tension specimen, load levels, 219
Communications, 22-24
Digital, 9
Compact tension specimen, 67, 104, 107
Approximate J, 277, 279
Blunt-notch, 123, 124
Crack length coefficients, 281
Dimension, 209
Effect of a/W ratio on J-R curve, 284-285
Effect of loading rate on predicted crack length, 263, 264
Elastic-plastic fracture toughness testing, 261, 263-265
Fracture surface, 294, 295
Irradiated, 199
J-R curve (see J-R curve, compact tension and three-point bend specimens)
J-R data, 17-4-Ph stainless steel, 287
Load levels, 219
Measured blunting line, 286
R-curve test configuration, 250
Rough fracture surfaces, 108
Side grooves, effect on J-R curve, 283
Specimen probe configuration, 73
Static and dynamic calibrations, 201
2T, 231
Computerized factory model, 13
Constant-load-amplitude test, 216-219
Effective modulus for material, 218
Inferred crack length, 218
Instantaneous crack length, 217-218
Summary flow chart, 217
Corrosion fatigue, 118
 Automatic measuring system, 119-120, 121, 122
Beach marks on fractured surface, 124, 126
Change in compliance due to crack initiation, 125
Comparison between K increasing and K decreasing test method, 128, 130
Crack growth from notch root in corrosive environment, 130
Effects of test condition on crack propagation rate, 131
Short crack propagation behavior, 128
Small fatigue crack, 125-126, 128
S-N curve of crack initiation, 127-128
Specimen, 123-124
Test in air, 124-126
Test in aqueous environment, 126-130
Testing apparatus, 122, 123
3.5 Ni-Cr-Mo-V steel test results, 127, 129-130
Crack
 Aspect ratio, variation with crack depth, 156, 159
 Closure, 120, 122
 Load, 233, 246
Front
 Static, 295
 Straightness, 146
Initiation, 118, 257
 S-N curve, 127
Profiles, weld toe, 88
Short, specimen geometry, 184
Crack depth
 Comparison of analytic and measured, 157, 160
Variation
 Crack aspect ratio, 156, 159
 Half-surface length, 158
 Normalized potential, 157, 160
 Crack extension, 249, 257
 Comparison of potential-drop and heat-tinting methods, 210
 Comparison of predicted and measured values, 263
 Crack growth (see also d-c potential drop method), 87, 118, 197
Data processing and analysis, 203-205
Low-cycle, 227
 Test system schematic, 232
Measuring methods, 202
Crack growth rate (see also Reversing d-c electrical potential method), 53
Automated test system, 213-222
 Accuracy, 143-146
 Applications, 216-222
 Approach, 133-136
 Constant-load-amplitude test, 216-219
 Constant-load fatigue crack growth experiment, 137, 140
 Crack length versus cycles, 137, 138-139, 143, 144-145
 Cyclic crack growth rates, 137, 141
 Data outputs, 214
 Equipment, 215-216
 Errors, 143
 Linear regression analysis, 142
 Method, 214-215
 Multile crack length readings, 142
 Near-threshold test, 219-221
 288°C pressurized water reactor, 136
 Resolution model, 143, 144, 145
 Schematic, 133, 215
 Software, 134-135
Specimen compliance, 133-134
Stress intensity factor, 137, 139
Test experience, 136-141
Variable-load-amplitude test, 221-222
Comparison, compliance and Frac-tomat, 55
Compliance-based rate, 175
Computed from load-versus-time data, 38, 39
d-c potential-based rate, 174
HY-80 steel, 235, 237
 In sodium chloride solution, 190
HY-130 steel, 236, 238, 240
Krak-gages (see Krak-gages)
Microcomputer control system-based rate, 175
Near-threshold rates, 167-176
 Microcomputer control system, 173-176
 Test specimen geometry, 170
Pressure vessel steel in air, 193
Weldment in air, 189
Rate comparison, 79, 80
Rene '95 rate data, 157, 161
Variation as function of a/W, 54, 55
Crack length, 233
 Accuracy of measurement, 288-289
 Calculation, 52-53
 Change in compliance, 124, 127
 Coefficients for various geometries, 281
 Comparison of visual and d-c potential drop measurement, 110
Compliance, 172
d-c potential variation, 170-171
Determination by unloading compliance, 280-281
Error, 269, 288, 290
 Using two types of analysis, 290
Hourly averages, 98
Inferred, 218
Instantaneous, 217-218
Monitoring, 51
Optical versus unloading compliance, 292, 293
Predicted and measured, 90, 91
Remote measurement, 168-169
Resolution model, 143-145
Scatter in measurements, 145
Versus cycles, 138, 241, 244
Versus number-of-cycles
 Bondable Krak-gages, 187-188
 Chromium-molybdenum-vana-dium steel, 192
 Sputtered Krak-gages, 191
Crack measurement, 87
 Using a-c potential-drop techniques, 87
 Using fixed probes, 87-88
 Using movable probe, 88-89
Crack microgauge, 87
Crack opening displacement, 55, 56
Gage, 273
System, 169, 171-172
Versus load, 172
Crack propagation, 101
Automated test system, 44-65
 Compliance calculation, 51
 Crack error for constant-K test, 64, 65
 Crack error for various modulus errors, 65
 Cyclic delay data, 62
 Experimental test procedures, 52-54
 Hardware, 47, 48
 Load-displacement curve and overload, 62, 63
 Material properties, 52
 Software, 47, 49-52
 100% tensile overload computer-controlled experiments, 61-62
 Variable-amplitude loading, 61
Epoxy resin response, 59, 61
Polycarbonate response, 59
Polystyrene response, 59, 60
Short crack behavior, 128
1035 response, 56, 58
A514 response, 56, 57
A588 response, 56, 57
Crack shape
Evolution, 89
Monitoring, a-c field measurements
Computer system, 92–93
Interpretation of readings in terms of crack depth, 90–92
Loading system, 94–96
Stress corrosion test, 94, 95, 96–97, 99
Sensitivity to applied stress, 159
CRACKSORT, 204–205
Crack-tip opening displacement, 249–251
CRAGRON, 204–206
Graphic presentation of a versus N, 206
Measured and calculated data, 205
Paris and statistical analysis results, 206
Printout of specimen identification and test parameters, 204
Regression line with confidence bands, 207
CRKFIT, 52

D
Data acquisition, 9
Data loggers, 28, 41
Data transmission, 9
DATASCAN
Data selection, 35
Noise rejection procedure, 35
d-c potential drop method, 169–171, 198–201
Automatic measuring system
Circuit diagram, 121

Outline, 120
Calibration equation, 108–109
Calibration problems, 116
Computer system operation, 113–114
Disagreement between visual and PD measured crack length, 115–116
Effects of thermal draft and slight changes in the 4A current level, 105, 108
Equipment, 103–104
Growth rate test results, 114
Interface schematic, 108
K-increasing program, 113–114
Load control signal, 109–111
Load frame and oven used for high-temperature fatigue tests, 107
Load-shedding scheme, 114–115
Measurement, 67
Rear view of control system, 106
Software, 110–111
Specimen preparation, 104, 107
Surface-flawed specimens
Block averaging approach, 153–155
Data analysis, 152–156
Experimental approach, 150
Finite-element analysis, 161
Hold-time conditions, 161–162
Material, 150
Potential data, 153, 154
Regression analyses, 158
Results, 156–158
Schematic diagram, 153
Test conditions, 150–152
System configuration, 104, 105–107
Threshold test program, 111–114
Top view of control circuitry, 106
Tunneling correction, 109
Tests in hot cells, 198–199
Versus load, 171
Digital computers
Positive and negative aspects, 11
Positive aspects, 11
Digital-to-analog converter, 30, 134, 173–174
Digital-to-analog multiplying conditioners, 70
Distributed laboratory control design, 13–14.
Distributed processing systems, 11

E
EDM notch, 152, 154
Effective modulus approach, 218
EIA RS-422A, 22–23
Elastic-plastic fracture, 227, 248
Elastic-plastic fracture toughness testing, 260–268
Compact testing specimens, 261, 263–265
Effect of loading rate
 Linear regression analysis correlation coefficient, 263, 264
 Predicted crack length, 263, 264
Predicted and measured values of crack extension, 263
Round compact testing specimen, 265
System, 261–262
Three-point bend specimen, 266–267
Epoxy resin, crack propagation response, 59, 61
EZGRAF, 276

F
FATCRAG, 203–204
Fatigue, 27–42
 Stress versus cycles-to-failure, 40
 Use of computers, 102–103
Fatigue experiments
 Automated, hardware schematic, 186
 Experimental results, 40
 Methods, 37–38
 FCPINP, 47, 49
 FCPRUN, 46–47, 49
 Flow diagram, 50
 FORTRAN programming, 41, 47
 Fractomat, 46, 53, 55, 177, 184
 Schematic, 179
Fracture mechanics, 44, 167, 248
Fracture toughness (see also Elastic-plastic fracture toughness testing; Irradiated stainless steels, crack growth and fracture toughness), 197
Data processing and analysis, 205–206, 208
Measuring methods, 202–203

G
GP-IB, 23

H
Heat-tinting method, compared with potential-drop method, 210
HY-80 steel
 Crack growth data, 235, 237
 Rate in sodium chloride solution, 190
 J-R curve, 258
 Side-grooved, fracture surface, 256
HY-130 steel
 Crack growth rate, 236, 238
 Versus J-range, 243, 245
 Crack length versus cycles
 Constant applied J-range, 239, 241
 Constant J over set amounts of crack extension, 243, 244
 J-R curve, 258
 Load versus load-point displacement, 235–236, 239
 Slope-defined closure load, 240
Hydraulic lag, 221
Hysteresis loops, 235–236, 239, 246

I
IEEE Standard 488-1978, 23
IEEE Standard P 802.3 Draft D, 23–24
Irradiated stainless steels, crack growth and fracture toughness (see also d-c potential drop system), 197–211
Compact-tension specimen dimensions, 199
Crack growth, measuring methods, 202
CRACKSORT, 204–205
CRAGRAN, 204–206
Data acquisition, 201–202
Block diagram, 200, 203
Difference between deflection and load-line displacement, 210
FATCRAG, 203–204
Fracture toughness tests, measuring methods, 202–203
JCALC, 208
JTENS, 206, 208
Load-deflection diagram, 208
Single-specimen potential-drop J-R curve, 209
Software, 203
Static and dynamic calibrations, 201
Inflection point method, 237–238
Instron machine driver, 47
Instrument controllers, 15

J
JCALC, 208
J-integral, 251–253, 269, 271, 277
Analysis, 229–231
Specimen dimension, 273
J-integral method, 227–246
Automated low-cycle test system, 232
Chemical composition of materials, 229
Constant ΔJ, 238, 240–243
Crack length versus cycles, 239, 241
Cycle load-COD plots, 240, 242
Experimental description, 231–234
J-integral analysis, 229–231
Load-COD data, 233–234
Load-COD record, 230
Materials, 228–229
Mechanical properties of materials, 229
Stepped J, 243–245
Crack length versus cycles, 243, 244
Growth rate versus J-range, 243, 245
2T compact tension specimen, 231
Uniformly varying ΔJ, 234–238
HY-80 steel growth data, 235, 237
HY-130 steel growth data, 236, 238
Hysteresis loops, 235–236, 239
Inflection point method, 237–238
Load versus load-point displacement, 235–236, 239
Slope-defined closure load, 240
Slope method, 235–236
J-R curve
Compact tension and three-point bend specimens (see also 17-4-pH stainless steel), 269–295
Analysis of raw data, 277, 279–281
Block diagram of computer-controlled test instruments, 274
CALEM, 275
Crack length, determination by unloading compliance, 280–281
Versus optical, 292–293
Effect of side grooves, 282, 283-284
Error in crack length, 288, 290
 Analysis, 289
 Standard estimate, 289
EZGRAF, 276
Flow diagram of automated J-R test program, 276, 278-279
Hardware and test equipment, 273-275
Interaction of program tasks and data files, 276
J_c calculation and validity checks, 281
J corrected for physical crack advance, 280
J-integral (see J-integral)
JRTEST, 275-276, 290
Load versus COD, 281, 282
Machine Interface Unit, 275
Material and specimen geometries, 272-273
Measured and calculated blunting line, 286
RSX11M, 275
Software, 275-277
Tearing modulus, 280, 287
Transfer function, 290
HY steels, 258
Irradiated stainless steel, 209
J_R curve, 260-261, 267
 Different specimen geometries, 266
JRTEST, 275-276, 290
JTENS, 206, 208
Comparison of crack growth rates with striation spacing measurements, 191
Crack length versus number-of-cycles, 187, 188
Results, 185-189
Chemical composition of materials, 182
Crack growth testing, 184-185
Heat treatments, 182
Limitations, 193-194
Material and environment, 181-183
Mechanical properties of materials, 182
Principle, 178-179
Schematic, 179
Specimen dimensions and test conditions, 183
Sputtered, 178, 180-182
Crack length versus number-of-cycles, 191-192
Photo-etching sequence, 180
Results, 189, 191-192
Specimen with lead wire terminals, 181
K-solution, 156
K_b specimen, 148, 156, 157, 164
Schematic, 149
Load levels, calculation, 219-221
Load-displacement curve, 120, 251-252
Cracked specimen, 122

Machine Interface Unit, 275
Materials testing, automated systems, 9-25
Distributed laboratory control design, 13, 14
Flexibility, 21-22
Hardware

Instrument controllers, 15
Minicomputer, 15
Multiprocessing, 16
Organization, 13–14
Personal computers, 16
Range of choices, 14–18
Single-board computer, 15–16
Impact on testing standards, 24–25
Limits on individual test parameters, 19–21
MTS Systems, 10–11
Peak detection, 17–18
Single-processor laboratory design, 12, 13

Software

Choices, 18
Flexibility, 22
Menu-driven, 9, 19, 20
Tasks which can be assumed, 12
Test control capability limitation, 10
Test documentation, 21
Used at University of Illinois, 18–22

Maximum load setting, 49
Mechanical properties
Material, 124, 182, 229
17-4-Ph stainless steel, 273
Merkle-Corten analysis, 229

Microcomputers, home-brew approach, 28
Minicomputer, automated materials testing systems, 15
MTS Crack Correlator, 173–174
Multiple-specimen technique, 271
Multiprocessing, 16

Near-threshold test, 213, 219–221
Crack growth rates, 167–176
Microcomputer control system, 173–176

Test specimen geometry, 170
Summary flow chart, 220

Paris analysis, 206
Paris law, 162
Personal computers, 16
Polycarbonate, fatigue crack propagation response, 59
Polymer, hysteretic heating, 61
Polystyrene, fatigue crack propagation response, 59, 60
Potential-drop method, 167, 197
Compared with heat-tinting method, 210
Pressurized water reactor environments, 132
Probe pair, 73

R-curve testing and analysis, 248–260
Aluminum alloys, 258
Blunting line for determining initiation, 257
Crack extension, 249
Crack-tip opening displacement, 249–251
Fracture parameters, 253
Fracture surface, 256
Hardware and instrumentation cluster, 255
Hardware, 253–254
HY steels, 258
J-integral, 251–253
Load-displacement record, 251–252
Procedure, 254–257
Software, 255
Test configuration, 250
Test specimen and instrumentation cluster, 254
Rene '95
Composition, 151
Crack growth rate data, 157, 161
K_b specimen test summary, 156, 157
Reversing d-c electrical potential method, 67-84
Applications, 76-77
Block diagram of components, 69
Control codes, 77
Crack shape measurement, 79-82
Current control circuit, 68-69
Current leads, 72
Cycle-by-cycle analysis, 82-84
Data acquisition, 69-70
Dialog from application program, 70, 71-72, 74
Electrical potential response, 82, 83
Measurement sensitivity, 78-79
Minimization of scatter in data by block averaging, 75, 76
Noise level reduction, 75-76
Potential circuit, 69
Probe configuration, 73, 74
Single active probe pair static test, 70, 72
Specimen design, 72-74
Stability, 78
System description, 68-72
Temperature compensation, 77-78
Test procedure, 74-76
Roe-Coffin potential-drop-solution, 149-150, 155, 162-164
Round compact testing specimen, 265
J-R curves, 266
RSX11M, 275

S
Servohydraulic machine calibration program, 47
Servohydraulic test frame, 9-10
Instrumentation, 10
Silting, 94
Sinclair ZX-81 microcomputer, 103
Single-board computer equipment, 15-16
Single-edge-notched bend specimen, R-curve test configuration, 250
Single-specimen technique, 271
Slope method, 235-236
Standards, impact of testing methods, 24-25
Statistical analysis, 206
Steel, stainless, 197
17-4-Ph stainless steel, 269
Chemical composition, 272
J-R curve, 291
J-R data, 287
Mechanical properties, 273
Specimen dimension, 273
Theoretical and experimental errors on J-R curve, 291, 292
Strain-controlled tension test, 16, 17
Stress corrosion test, 94-97
Procedure, 96
Readings, 99
Results, 97
Schematic, 94, 95
Stress-intensity factor, 53, 101-102, 132, 167
Errors in range, 146
Shedding experiment, 137, 139
Versus crack length, 137, 139
Striation spacing measurements, compared to Krak-gage rates, 191
Strip chart recorder, 28, 41, 102
Superalloys, 148
Surface defect, 67
Surface-defected specimen
Crack depth, surface length and area change, 80, 81
Probe configuration, 73, 74
Surface flaws, 148
Sustained-load cracking and fatigue tests, 27-42
Automatic shutoff, 35
Change an experiment, 34
Diagnostic options, 34
Disk storage, 36
Flow chart
 DATASCAN subroutine, 31, 33, 34
 Major elements of BASIC operating program, 32
Hardware, 29–30
Load-versus-time data, 38–39
Methods, 37
Results, 38–40
Software and operating system, 31–37
Standby power system, 30, 36
Start an experiment, 31–32

T

Tearing modulus, 280, 287
Three-point bend specimen (see also J-R curve, compact tension and three-point bend specimens), 266–267
Approximate J, 277
Crack length coefficients, 281
J-R curve, 266
 Effect of a/W ratio, 285–286
 Side grooves effect, 282–284
J-R data, 17-4-Ph stainless steel, 287
Load versus COD, 281–282
Threshold stress-intensity factor, 101–102
Threshold, 167
Time sharing systems, 11
Timex-Sinclair 1000, 103
Titanium alloys, 101
Transfer function, 290

U

Unloading compliance, 119–120, 167, 213, 260, 263, 269, 271
Accuracy of crack length measurement, 288–289
Compared with optical crack length, 292–293
Crack length determination, 280–281

V

Variable-load-amplitude test, 213, 221–222
VLSI, characteristics, 12

W

Weld toe, crack profiles, 88