Subject Index

A

<table>
<thead>
<tr>
<th>Acid rain</th>
<th>287</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aeration</td>
<td>187</td>
</tr>
<tr>
<td>Aluminum</td>
<td>17, 262</td>
</tr>
<tr>
<td>2024</td>
<td>132</td>
</tr>
<tr>
<td>6061</td>
<td>132</td>
</tr>
<tr>
<td>7075</td>
<td>20, 131, 132</td>
</tr>
</tbody>
</table>

| Anodized aluminum | 135 |

<table>
<thead>
<tr>
<th>ASTM standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 262, 455-464</td>
</tr>
<tr>
<td>B 457, 139</td>
</tr>
<tr>
<td>C 665, 215</td>
</tr>
<tr>
<td>C 764, 216</td>
</tr>
<tr>
<td>D 610, 129</td>
</tr>
<tr>
<td>D 1141, 249</td>
</tr>
<tr>
<td>E 399, 34</td>
</tr>
<tr>
<td>E 647, 34</td>
</tr>
<tr>
<td>G 1, 225, 231, 2375</td>
</tr>
<tr>
<td>G 3, 74, 403</td>
</tr>
<tr>
<td>G 5, 255, 328</td>
</tr>
<tr>
<td>G 28, 437, 438, 442, 450, 452</td>
</tr>
<tr>
<td>G 30, 251, 376</td>
</tr>
<tr>
<td>G 31, 67, 78, 250, 375</td>
</tr>
<tr>
<td>G 36, 376</td>
</tr>
<tr>
<td>G 38, 252</td>
</tr>
<tr>
<td>G 39, 252</td>
</tr>
<tr>
<td>G 40, 359</td>
</tr>
<tr>
<td>G 43, 19</td>
</tr>
<tr>
<td>G 46, 375</td>
</tr>
<tr>
<td>G 48, 251, 315, 375</td>
</tr>
<tr>
<td>G 53, 159, 161</td>
</tr>
<tr>
<td>G 59, 198, 233</td>
</tr>
<tr>
<td>G 61, 326, 328, 334</td>
</tr>
</tbody>
</table>

| Autoclave | 339, 417 |

B

<table>
<thead>
<tr>
<th>Bent beam test</th>
<th>251</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biofouling</td>
<td>203</td>
</tr>
<tr>
<td>Bode plot</td>
<td>126-137</td>
</tr>
<tr>
<td>Brass</td>
<td>262</td>
</tr>
<tr>
<td>Brazed joints</td>
<td>177</td>
</tr>
<tr>
<td>Brick masonry</td>
<td>285-296</td>
</tr>
<tr>
<td>Cracking</td>
<td>293</td>
</tr>
<tr>
<td>Brine</td>
<td>341</td>
</tr>
</tbody>
</table>

C

<table>
<thead>
<tr>
<th>Cabinet tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyclic</td>
</tr>
<tr>
<td>Humidity tests</td>
</tr>
<tr>
<td>Kesternich</td>
</tr>
<tr>
<td>Salt spray</td>
</tr>
<tr>
<td>Sulfur dioxide</td>
</tr>
<tr>
<td>Sulfur dioxide-salt fog</td>
</tr>
<tr>
<td>Calcareous deposit</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Can corrosion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accelerated test</td>
</tr>
<tr>
<td>Effects of chromium</td>
</tr>
<tr>
<td>Effect of lacquer</td>
</tr>
<tr>
<td>Pack test</td>
</tr>
<tr>
<td>Solder attack</td>
</tr>
<tr>
<td>Storage conditions</td>
</tr>
<tr>
<td>Cathodic depolarizer</td>
</tr>
<tr>
<td>Cathodic protection</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcium chloride content</td>
</tr>
<tr>
<td>Clad metal</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coatings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alodine 600, 131</td>
</tr>
</tbody>
</table>
Coatings (continued)
 Chromate conversion, 123
 Deterioration of, 159
 Epoxy/polyurethane, 20
 Inorganic, 17
 Lacquer, 48
 Undermining, 60
Coinage material, 260–274
 Soilage properties, 271–274
Computer program, 28
Concrete, 275–284, 429
 Sodium thiocyanate content, 283
Copper and copper alloys, 262
 614 yellow brass, 360
Correlation
 ASCC test, 54
 Corrosion ranking, 225
 Cyclic sulfur dioxide-salt fog, 21
 Electrochemical tests, 144
 Environmental wear behavior, 274
 FUCA test, 160
 Immersion tests, 177
 Laboratory tests, 11
 Pit ranking, 244
 Salt spray tests, 14
 Tafel extrapolation, 238
Corrosion behavior diagram, 75–79
Corrosion fatigue, 34, 174
 Fatigue crack growth, 34
Creep, 292
Crevise corrosion, 9, 78, 103, 227, 250, 299–323, 324–336, 337–357, 376
 Area ratio effects, 318
 Critical concentration, 10
 Critical temperature, 9
 Effect of geometry, 10, 313, 354
 Effect of pH, 315, 349
 Incubation period, 354
 Mathematical model, 300
 Multiple crevice assembly, 385, 396
 Oxygen concentration effects, 319
 Propagation, 303
C-ring test, 251
Cupro-nickel, 262
Current decay curve, 210
Data acquisition, 24–35
Dealloying
 Solders, 57
Deformation
 Corrosion induced, 292
 Deicing salts, 275
 Dezincification, 176
 Double cantilever beams, 251
Electrochemical tests, 65–90, 325
 Cell design, 339
 Compartmentalized cell, 304
 Controlled potential, 72, 210, 406, 416, 431
 Cyclic potentiodynamic polarization, 77, 95, 110, 228, 328
 Electrical resistance, 67
 EPR test, 421
 Galvanostaircase polarization, 112
 Galvanostatic polarization, 254, 276
 Impedance, 87, 122–142
 Polarization resistance, 71, 113–120, 147, 197–206, 233
 Effect of scan rate, 201
 Potential measurements, 236, 277, 309, 345
 Metallic coated steel, 146–151
 Nickel-aluminum bronze, 30
 Potential step method, 327
 Potentiodynamic polarization, 31, 71, 72, 255
 Effect of scan rate, 72, 96
 Rapid scan technique, 75
 Slow scan technique, 73
 Potentiostaircase polarization, 113
 Potentiostatic polarization, 254, 401
Tape method, 91–107
Tafel region, 69, 154, 199, 233
Environmental wear test, 260–274
Environments
Aircraft carrier, 17
Erosion corrosion, 175, 358–372
 Effect of velocity, 361
 Jet test, 360
 Shear stress, 363
Exfoliation tests, 19

F
Ferric chloride test, 375
Fluid velocity, 82
Fluorescent UV and condensation test, 159
Fretting corrosion, 262

G
Galvanic corrosion, 7, 50, 147
 Area ratio effects, 50
 Current distribution, 32
 Soldered tin, 57
 Tin plated steel, 49
 Zero resistance ammeters, 32
 Galvanized steel, 147, 172
Heat exchanger, 36–47
 Galvanic corrosion, 33
 Zirconium, 36
Heat exchanger tubes, 359
 Current distribution, 33
Heat transfer
 Corrosion effects, 36
High temperature
 Reference electrode, 417
Humidity test
 Cyclic, 261
Hydrogen embrittlement, 251
Hydrogen induced cracking, 7, 254
Hydrogen sulfide, 246
Hydrothermal conditions, 338
Hysteresis, 110, 111, 229, 242, 325

I
Immersion tests, 66, 374
 Electrolyte-volume ratio, 51
Inhibitors, 12, 228–245
Insulation, 215–217
Intergranular corrosion, 437–454
 Effect of mill condition, 459
 Effect of surface preparation, 455
 Stress corrosion cracking, 421

L
Localized corrosion, 66
 Weld metal attack, 41

M
Masonry, 286
Metal pick-up, 179
Microcomputer, 24–35
Mortar, 275–284
Multiple crevice assembly, 302, 329
Nickel and nickel alloys, 262
 Hastelloy C, 437–454

P
Pipe
 Brass, 176
 Copper, 173
 Galvanized steel, 172
Pitting, 10, 77, 91–107, 172, 250, 324–336, 444
 Effect of pH, 98
 Pitting potential, 10, 242, 413
 Effect of surface pretreatment, 97
Polarization curves
 3003 aluminum, 112
 Brass, 113, 367
 Copper, 112, 114
Polarization curves (continued)
Nickel-aluminum bronze, 32
Stainless steel
18-2 ferritic, 101
Type 304, 96, 97, 100
Type 316, 319
Type 420, 404–412
Steel, 280, 281
Coated, 155–156
N80, 232
Pore water, 280
Potable water, 170
Pourbaix diagrams, 67–68
Precracked specimen, 253
Prestressed steel (see reinforcing steel)

R
Reinforcing steel, 102, 275–284, 286, 428–436
Repassivation potential, 324
Effect of scan rate, 96
Rotating cylinder, 82

S
Seawater, 197–206, 207–214, 304
Fouling, 203
Synthetic, 208, 304
Sensitization, 456
Austenitic stainless steel, 416
Slow strain rate tests, 253, 415–425
Solder attack, 177
Can corrosion, 53
Lead dissolution, 56
Solder joints, 178
Sour gas, 7, 249
Specimen preparation, 231, 342, 455–464
Stainless steel
17-4, 20
18Cr-2Mo, 100, 307
18Cr-4Ni-2Mo, 308
26Cr-1Mo, 308
254 SMO, 308
Type 304, 94, 307, 327, 415, 421, 455
Type 316, 307
Type 317, 308
Type 420, 401
Type 430, 307
Type 904, 306, 317
Steel, 17, 185, 198, 209, 216, 262, 276, 428
A36, 287
N80, 231
1005, 203
1010, 130
Metallic coated, 144
Polybutadiene coated, 125
Pore resistance, 127
Tin plate, 48
Stress corrosion cracking, 6, 84, 251, 376, 415–427, 428
Constant load test, 432
Controlled potential test, 406
Critical stress, 10
Effect of chloride concentration, 407
Effect of hydrogen sulfide, 406
Effect of pH, 407
Intergranular
Critical potential for, 421
Modulus measurements, 85
Polarization tests, 86
Slow strain rate test, 84, 433
Step-stress tension test, 404
U-bend specimens, 251, 392
Stress intensity, 253
Stress-strain curves
Type 304 stainless steel, 423
Sulfide stress cracking, 7, 251, 400–414
Step-stress tension test, 404
Surface preparation, 105, 217, 223
Surface treatment, 128
T
Tensile bars, 251
Tin plate
 Can corrosion, 49
 Passivation treatment, 60–62
Titanium
 Grade 2, 338
 Grade 12, 337
V
Vapor phase corrosion, 44
Velocity effects, 81–83

W
Wear corrosion, 262
Wear tests, 260–274
Weld metal attack, 41, 100, 450

Z
Zirconium, 36
 P60707, 37
Effect of heat flux, 42
Weld metal attack, 41