Index

A

Absolute thermoelectric power (ATP)
Application to real thermoelements, 122
Calculation, 119
Of gold, 258
And heat capacity, Mott and Jones theory, 139
Of lead, table, 120
Of selected elements, table, 121
Of ternary elements in concentrated solid solutions of copper-nickel alloys, 209
Of transition elements, 179
Accelerating voltage, 12
Alloys, thermoelectric behavior, 169
Alumel, application of spin-cluster model, appendix, 279
Angular momentum (of electrons) (see First quantum number)
Anti-parallel spin, 64
Atomic structure from Schrödinger model, 60

B

Band theory of solids, 91, 163, 256
Black body radiation, 9
Bohr correspondence principle, 51
Boltzmann tail, 80
Born postulate, 33
Bose-Einstein statistics, 78
Bragg's law, 21, 102
Brillouin zone theory, 100

C

Central field approximation, 65
Chromel, application of spin-cluster model, appendix, 287
Classical mechanics, 3, 30
Comparison of properties with quantum mechanics, table, 78
Schrödinger wave equation, 35
Copper-nickel-base alloy thermoelements, 202
Covalent bonds, 68
Compton effect, 23, 27
Corollaries of Seebeck thermometry, 129
Crystal lattice, periodic potentials, 91
Crystalline anisotropy, 106

D

Davisson-Germer experiment, 21
deBroglie equation, 16, 21, 29
Debye "T3 law," 85
Degenerate states (of electrons), 60
Density
Of electrons in solids, 71
Fermi-Dirac function, 76
Imperfection density, 252
Sommerfeld theory of metals, 70
Fermi level, 73
Diffraction phenomenon, 24, 30
Dirac, 64
Fermi-Dirac function, 77
Drude-Lorentz theory, 7, 85
Duality (in waves/particles), 13, 39
E

Eigenvectors, 50
Eigenvalues, 42, 49
Einstein
 Bose-Einstein statistics, 78
 Kinetic energy of incident radiation, 11
 Waves and particles, 13
Electrical conductivity of normal metals, 88
Electromotive force (emf)
 Peltier effect, 2
 Seebeck effect, 1
 Thomson effect, 2
Electron energy states, 62, 66
 Average energy of valence electrons
 (Fermi level), 75
Electron optics, 14
Electron theory, 2–34
Heat constant of metals, table, 88
In high-alloy thermoelements, 202
In low-alloy thermocouples, 177
Quantum mechanic restrictions, 77
In semiconductors, 218
Shell occupation, 71
Thermoelectric power and electron heat capacity, 157
Exclusion in behavior of particles, 78
Extended zone model, 103
Extension wires (for thermocouples), 199
Extrinsic semiconductors (see Semiconductors)

F

Fermi
 Effect of alloying elements in solid solution in transition metals on Fermi levels, 161
 Effect of stress/mechanical working, 164
 Effect of temperature, 159
 Energy of electrons, 73
 Fermi-Dirac function, 76, 141
 Fermi energies, table, 76
 Fermi-Sommerfeld theory of metals, 81
 Level in semiconductor elements, 218
 Finite potential well (see One-dimensional well)
 Fourth quantum number, 64
 Frequency of radiation, 12
 Gibbs free energy, 133
 Gold, thermoelectric data, 258–259
 Group velocity, 19
 Hamiltonian function, 36
 Heat capacity of metals, 82, 133
 Heat capacity of transition elements, 86
 Heat/current flow effect on Fermi-Dirac function, 141
 Heisenberg’s uncertainty principle, 27, 39, 77
 Helium atom wave functions, 64
 Hertz, 10
 High-alloy thermoelements, 202
 Incident radiant energy, 11
 Intrinsic semiconductors (see Semiconductors)

J

Jones theory (see also Mott and Jones theory)
 Application in solid-state reactions, 251
 Joule effect, 2, 148
K

\[K_n, \, 149 \]

L

Landau, 91
Law of homogeneous conductors, 114
Law of intermediate conductors, 121
Law of successive temperatures, 122
Lithium atom probability density, 63
Lord Kelvin (see Thomson)
Low-alloy thermocouples, 176

M

Magnetic field (of electrons) (see Third quantum number)
Maxwell-Boltzmann statistics, 78
Measuring junction, 1
Mechanical working, effect on Fermi levels, 164
Metals
Electron models, 99
Inner electron shells, 68
Purity determination, 260
Thermoelectric instability in thermocouples, 166
Thermoelectricity and heat capacity, 133
Mott and Jones theory, 139
Multivalent normal metals, 172

N

Newtonian relationships, 35
Nickel-chromium thermocouple alloys, short-range ordering, appendix, 275
Nickel/nickel-base alloys
In thermocouples, 184
Thermoelectric properties, appendix, 269
Nicrosil, application of spin-cluster model, appendix, 282

Noble metals (alloys) thermoelectric behavior, 169
Nonintegral valences, 68
Normalization, 33

O

One-dimensional wells, 44
Orbit (of electrons) (see Second quantum number)

P

Parallel spin, 64
Particles (see Waves and particles)
Pauli exclusion principle, 59, 77, 95
Peltier effect, 2, 112, 117
Phase velocity, 19, 25
Photoelectric effect, 10
Planck-Einstein equation, 15
Planck's law, 9
Platinum/platinum alloy thermocouples, 177
Effect of rhodium, 181
Principal quantum number, 62
Probability density, 33
Purity of metals, 260

Q

Quantized radiation, 13
Quantum mechanics, 9, 30, 37
Comparison of properties with classical mechanics, table, 78
Mott and Jones theory of thermoelectricity, 139
Restrictions on behavior of particles, 77
And Schrödinger wave equation, 35
Sommerfeld theory, 70
Thermoelectricity and heat capacity of normal/transition metals, 133
Quantum numbers, 62
Rayleigh-Jeans law, 9
Reed "functional model," 125
Reference junction, 1, 112
Repulsion energy, 95
Retarding voltage, 12
Reversible heat effect, 4
Rhodium, effect on platinum, 181

Schrödinger wave equation, 35, 92
Second quantum number, 62
Seebeck effect, 1, 111, 125
Functional corollaries, 129
Seebeck potential cell, 125
Seitz calculation, 85
Semiconductors
Conduction, 100
Thermoelements, 218
Extrinsic semiconductors, 233
Intrinsic semiconductors, 218
Properties at 300°C, table, 234
Semiconductor materials, review, 242
Shell occupation, Fermi level, 73
Silver-base alloys, 170
Snell's law, 15
Solids
Band theory, 91, 256
Brillouin zone theory, 100
Sommerfeld theory, 70
Solid state reactions, 248
Solution of Schrödinger equation, 43
Space and time limitations, 24
Specific heat of electricity, 114
Spectra
Pauli exclusion principle, 59
Zeeman effect, 63
Spin-cluster model
Application to Alumel, appendix, 279
Application to Chromel, appendix, 286

Application to Nicrosil, appendix, 282
Spin (of electrons) (see Fourth quantum number)
Statistical approach, 30
Fermi-Dirac function, 76
Summary of statistical treatments, table, 79
Stress, effect on Fermi level, 164
Surface behavior of electrons, 7, 68

Taylor experiment, 26
Temperature
Effect on Fermi level, 150
Effect on Fermi level, table, 76
Effect on high-alloy thermoelements, 206
Effect on solid-state reactions, 248
Ternary alloying elements
Effect on high-alloy thermoelements, 205
Thermionic emission, 11
Thermocouples
Described, 1
Effect of thermoelectric instability, 166, 176
Extension wires, 199
Heat capacity, 133
High-alloy thermocouples
Copper-nickel-base alloys, 202
Low-alloy thermocouples
Nickel/nickel-base alloys, 184
Nicrosil-Nisil thermocouples, 193
19 alloy-20 thermocouples, 195
Platinum/platinum alloys, 177, 197
Tungsten-rhenium alloy, 195
Type JP thermoelements, 191
Short-range ordering in nickel-chromium alloys, appendix, 275
Thermoelectricity
Behavior of alloys, 169
Behavior of concentrated binary solid solutions, 206
Binary alloys, table, 171
Corollaries of Seebeck thermometry, 129
Factors affecting Fermi levels, 150
Heat capacity of normal metals, 133
Heat capacity of transition metals, 137
Mott and Jones theory, 139
Properties of nickel and its alloys, appendix, 269
Purity of metals, 260
Research applications in the solid state, 248
Semiconductor thermoelements, 218
Thermodynamics, 114
Third quantum number, 63
Thomson effect, 2–7, 113, 119
Three-dimensional well, 56, 71, 104
Time independence in Schrödinger equation, 42
Transition metals
ATPs, 179
Composition of transition thermoelements, table, 178
Concentration of solutions of noble metals in transition elements—effect on Fermi levels, 163, 173
Thermoelectricity and heat capacity, 137
Tungsten-rhenium alloy thermocouples, 195

U
Uncertainty principle (see Heisenberg’s uncertainty principle)

V
Volta effect, 112

W
Waves and particles, 13, 95
Wave theory, 25
And Schrödinger wave equation, 35
Wein equation, 9
Well separation, 94

Z
Zeeman effect, 63
Zone theory of solids, 100