Subject Index

A

- Adsorption/desorption, 29
- Airflow
 - by convection, 16
 - in cool storage building, 53–57, 143
 - in mathematical models, 44, 142
- Airflow control, 12
- Air leakage
 - in buildings, 12, 152–154
 - role in moisture transport, 6–7, 12, 152
 - winter problems, 157
- ASTM Committee C-16, 45, 151, 154
 - Subcommittee C-16.31, research recommendations, 166
- ASTM Standards
 - C 218–71, 20
 - C 755–85, 1
 - E 691–79, 135
 - E 96–66(1972), 145
 - E 96–80
 - comparison with ASTM F 372–73, 138
 - comparison with infrared techniques, 134–138
 - discussion of procedure, 15, 19, 74, 76
 - precision and reliability, 145, 151, 160
 - revision suggestions, 90, 133, 163
 - round robin testing, 73–88
 - variability in test results, 88, 123, 135, 151
 - F 372–73, 138

B

- Banjo cell, 145
- Barometric pressure, effect on WVT measurements, 145, 161–162
- Building design (see Design)
- Building materials (see also Specific materials), 1, 144, 152
 - field tests, 37–38, 101–102
 - manufacturing variability, 159
 - sorption isotherm catalog, 147
- Building practices,
 - controlling moisture problems in, 153–154, 157
 - stud drying in test huts, 39

C

- Capillarity, 13
- Capillary effects, on wood drying, 121, 146
- Capillary pressure, effect on moisture saturation, 119
- Cellular plastics, 64, 165
- Climate, effect on moisture problems, 37, 56, 59, 60, 141
- Climate zone, in building design, 13
- Coatings, 144, 163
- Computer aided testing, 38, 133
- Computer catalog, sorption isotherm, 30–32, 147
- Computer models and programs
 - MADTARP, 14
 - SORPTION, 28, 32, 147
 - WALLDRY, 46, 141
- Condensation (see also Air leakage), 5, 11
 - effecting building durability, 42, 152, 157
 - field observation, 51–60, 143
- Convection, in moisture transfer mechanisms, 13, 16
- Cup methods (see also Dry cup method, Wet cup method), 2, 64–66, 92, 93, 123–132
 - experimental difficulties, 2, 99, 143–144, 164
 - research recommendations, 133, 154
 - sealing edges recommendations, 167

D

- Desiccant method (see Dry cup method)
- Design, building practices, 11–13, 60, 153–154
- Desorption, 29
- Diurnal condensation cycles, in test huts, 42
- Dry cup method, 2, 92, 93, 123–132, 144
 - insulating materials, 64–65

E

- Electric field probes, 101–112, 146
- Environmental conditions, on building performance, 13

Copyright © 1989 by ASTM International

www.astm.org
Ethylene propylene diene monomer roofing material (EPDM), 51–52, 143
permeance results, 55–57
Expanded polystyrene, 52, 143, 158
Experimental errors (see Testing)
Experimental methods (see Test Methods)
Extruded polystyrene, 40, 63, 123–133, 144

F
Fiberboard panels, 46
Fiberglass insulation, 19–26, 39–40, 64, 102, 146
Field tests
 electric field probe methods, 101–112, 146
 on site observations, 51–60, 143
test huts, 35–49, 141
Fluorinated ethylene propylene film, FEP, 73–88, 143
Fungal growth, in test huts, 43
Furring strips, effect on drying rates, 40–42

G
Gamma-ray densitometer, 117–118, 120, 146
Gasket seals, in ASTM E 96–80, 80, 89, 144, 167
Glass fiber insulation
drying in walls, 39–40
electric pin probe testing of, 101–112, 146
moisture movement in, 19–26, 64, 146
Gravimetric analysis (see also ASTM E 96–80), 136, 151, 161
compared to instrumental methods, 134–138, 145
Gravimetric calibrations, effect of barometric pressure on, 161
Gravitational effects, on wood drying, 118

H
HDPE film (see High density polyethylene film)
Heat and moisture transfer, 12–17, 20
Heat flow measurements, 21–23
 thermocouple probe, 105
Heat transport, 19–27, 146
HFM (heat flow meter) apparatus, 20
High density polyethylene (HDPE) film, 73, 75, 77–88, 143
Humidity control, in ASTM E 96–80 testing, 74, 94, 124, 132, 161, 164,
Humidity effects, in moisture problems, 37, 141
Hygroscopic moisture, 29
Hysteresis phenomena, 29, 115, 147

I
Infrared detection methods, 133–138, 145
Instrumentation
gamma ray densitometer, 117, 146
infrared techniques, 133–138, 145
in test huts, 38
heat flow meter (HFM) apparatus, 20
moisture field probes, 101–112, 146
Insulating materials (see also Building practices, Cool storage building, Moisture accumulation, Water vapor transport)
cellular plastics, 64, 165
expanded polystyrene, 52, 143, 158
extruded polystyrene, 40, 63, 123–133, 144
fiberboard panels, 46
glass fiber insulation, 19–26, 39–40, 64, 101–112, 146
phenolic foam board, 102, 104
polyisocyanurate foam (PIR), 51, 63–71, 142
polyurethane foam (PUR), 63–71, 142, 160
Insulation, 5, 19–26, 63–70, 142, 146
research needs, 151
Interior condition, effect on building performance, 13
Isotherm (see sorption isotherm)
Isothermal test methods, 19, 145, 151, 154
research needs, 151, 154, 160, 163

L
Laboratory testing (see also ASTM E 96–80, Materials, Testing)
gravimetric methods, 134–138, 145
infrared methods, 133–138, 145
round robin comparison, 73–88
siding tests, 44–45
whole-wall test, 45
wood drying tests, 116–121
Liquid saturation in wood, 115
Lumber industry (see also Wood drying process), 114
MADTARP, 14
Materials
 cellular plastics, 64, 165
coatings, 144, 163
 ethylene propylene diene monomer (EPDM) roofing material, 51–57
 expanded polystyrene, 52, 143, 158
 extruded polystyrene, 40, 63, 123–133, 144
 fiberboard panels, 46
 fluorinated ethylene propylene (FEP) film, 73–88, 143
 furring strips, 41–42
glass fiber insulation, 19–26, 39–40, 64, 101–112, 146
 high density polyethylene (HDPE) film, 73, 75, 77–88, 143
 Mylar film, 73, 75–77, 80–82, 86–88, 143,
paints, 144, 163,
 phenolic foam board, 102
 plywood sheathing, 48
 polyethylene foil, 94
 polyisocyanurate foam (PIR), 51, 63–71,
polyurethane foam (PUR), 60, 63–71, 142
 polyurethane foam (PUR), 60, 63–71, 142, 160
tarred paper, 94, 144
 waferboard panels, 39, 45
 wood, 46, 114, 116, 120–121, 146
Mathematical models (see also Research needs, System-level studies)
in heat flow, 14, 44
 in moisture movement, 12–17, 142
 in moisture probes, 108,
in sorption isotherms, 30
Mineral fiber insulation (see Glass fiber insulation)
 MIT pin probe, 102–104
Mocon Permatran W tests, 86–87, 136–137, 144
Modeling, 13–15, 17, 142
 simulation of moisture concentration, 21, 146
 Models, aid to building design, 154
 Modified cell test, 142
 Modified cup method, 65–66, 142, 163
Moisture (see Condensation, Water vapor)
 Moisture absorption, 151
 Moisture accumulation (see also Condensation, Moisture problems)in building materials, 157–158
 in insulating materials, 63–71
 Moisture adsorption curves, 46
 Moisture content (see Materials, Testing methods)
 Moisture flow, in mathematical models, 44
 Moisture migration, 14
 Moisture movement (see also Airflow), 13–15, 36
 in a cool storage building, 53, 56–60
 in wall system models, 43–44
 research needs, 151, 153
 Moisture problems, 35–37, 49, 101, 141, 154
 Moisture saturation, and capillary effects, 119
 Moisture transport (see also Airflow, Water vapor transmission)
 air leakage, 141, 143, 152
 effect of thermal gradient on, 19, 21
 research needs, 153
 Mold, due to moisture problems, 37
 Moment method, permeance measurements, 16
 Mylar film, permeance of, 73, 75–77, 80–82, 86–88, 143
N
Night sky radiation phenomenon, 44, 48
Non-isothermal testing of WVT, 165
P
Paints and coatings, 163
Perm, definition of, 12
Permatran W, 86–87, 136–137, 144
Permeability
 of high building coatings, 144
 of insulation materials, 70–71,
 of roofing materials, 52–53, 56–57
 of wood samples, 114–121, 146
Permeance (see also Water vapor transmission), 15–16
 definition, 16
 testing, 55–56, 70–71, 78–79, 92–94, 132, 133
 variability in test data, 123–124, 143
Phenolic foam board, 102
PIR (see Polyisocyanurate foam)
Planar moisture probe, 107–112
Plywood sheathing, 48
Polyethylene foil, 94, 144
Polyisocyanurate foam, 51, 54, 63–71, 142
Polyurethane foam, 63–71, 142, 160
Porous board, 144
PUR (see Polyurethane foam)

R
Refrigerated building, case history, 51–60
Relative humidity
 effect on building moisture problems, 37, 141
 in cup method testing, 74, 94, 124, 132–133, 161, 164
 in sorption isotherm, 29
Reference materials, for ASTM E 96–80, 76–88, 143
Research needs
 ASTM E 96–80, 73–88, 143
 in electric moisture probes, 111
 moisture transport, 37, 43, 71, 141, 152–154
 non-isothermal tests, 142, 165
 standardizing ASTM E 96–80, 87–88, 133, 143, 163
 thermal gradient methods, 166
WALLDRY, 49
WVT measurements, 151–152, 154, 158
Roofing materials, 52, 153
Round robin testing
 ASTM E 96–80, 73–88, 143
 cup methods, 91–100, 144
 infrared methods, 134–138, 145
WVT rates of extruded polystyrene, 123–133, 144

S
Salt solutions, 164
Sealing gasket edges, 124–132, 144, 161, 167
Sheathing drying rates, 42
Siding tests, 44–45
SORPTION, 28, 32, 147
Sorption isotherm, 28–32
Specimen sealing techniques, 124–132, 144, 161, 167
Spot permeability, 94
Stack effect (see also Airflow), 6, 58–59
Standard reference materials, 73, 76–88, 143
Stud drying techniques, 39
Surface area of samples, 161
System-level studies, 35–49, 51–60, 141, 143

T
Tarred paper, 94, 144
TC probe (see Thermocouple Probe)
Teflon FEP films, 73–88, 143
Temperature control, in ASTM E 96–80, 132
Test huts, 35–49
Test methods (see also ASTM E 96–80)
 electric field probes, 101–112, 146
 gravimetric analysis, 134–138, 145, 151, 161
 instrumentation
 gamma ray densitometer, 117, 146
 infrared techniques, 133–138, 145
 in test huts, 38
 heat flow meter apparatus, 20
 moment method, 16
Testing procedures (see also Round robin testing)
 research needs, 133, 151
 sample surface area, 161
 sealing gasket edges, 124–132, 144, 161, 167
Thermal conductivity of wood, 14
Thermal efficiency, in building materials, 101
Thermal gradient
 in cellular plastic boards, 66
 modified cell method, 142
 in non-isothermal testing, 165
 testing WVT, 64, 66–67, 143, 145, 165
Thermal gradient method, 66–67, 166
Thermal moisture diffusivity, 16
Thermal performance, of insulation materials, 64, 106
Thermocouple moisture probe, 104–107
Time of day, on test hut data, 44
Transient flow method, 114–121
Transpiration, 13

U
Urethane foam (see Polyurethane foam)

V
Vapor barriers (see also Vapor retarder)
 history of, 1, 5
Vapor permeability determination, 92
Vapor retarder, 1, 12, 59

W
Waferboard panels, 39, 45
Wall sheathing, 94
Wall system models, 43, 141
WALLDRY, 47, 49, 141
Water vapor diffusion, in mathematical models, 13–15, 153
Water vapor flux, 21–25
Water vapor permeability, 19, 92
Water vapor permeance, of insulating materials, 70–71
Water vapor resistance, 99
Water vapor transmission (see also Air movement, Moisture movement, Testing methods)
ASTM E 96–80 round-robin, 73–90, 91–100, 123–133, 143–144
discussion and recommendations, 151–154, 157–166
effect of barometric pressure on, 145, 162
electric field probes, 101–112, 146
in building materials, 28–32, 144
in buildings, 12–17, 142
infrared detection determination, 134–138, 145
in insulating materials, 19–26, 63–71, 123–133, 142, 144
in wood drying, 114–121, 146
system-level studies
 in refrigerated storage building, 51–60, 143
 in test huts, 35–49, 141
 in vapor barriers, 5–7
Water vapor transmittance rates, determination, 134–138, 145, 158–160
Wet cup method, 2, 92, 93, 144, 158
Whole-wall test, 45
Winter condensation, in test hut construction, 12
Wood drying process, 114–115
Wood permeability tests, 115–121
Wood framed walls, computer model, 46
WVR (see Water vapor resistance)
WVT (see Water vapor transmission)