Subject Index

A
Accelerated corrosion, 205(fig)
Accelerated growth, 658–665, 667–675(figs), 676(table)
Accelerated irradiation growth
Zircaloy-4 fuel rods, 658–677
Accelerated oxidation, 513–514
Acicular structures, 386–387, 466
Activation energy, 171(fig), 442–444
Advanced Test Reactor (ATR) radiation exposures, 247
Advanced water breeder applications program tests (AWBA), 268
Aging
effects on beta-quenched zircaloy-4, 453(table), 454–456(figs), 458–461(figs), 470
Alkali dissociation, 187–201, discussion, 735
Alloying elements
Zircaloy-2, 347–348, 353(figs), 355–357(figs), discussion, 744
zirconium, 665–666
See also Chromium, Iron, Nickel, Niobium, Tin
Alpha-zirconium diffusion of transition elements, 436–448(figs, tables)
discussion, 751
Alumina polishing
effect on oxidation rate, 513
Aluminium compression properties, 583
Analytical transmission electron microscopy (TEM), 216
Anisotropic creep behavior, 587–591, 597, 644
Anisotropic deformation model, 623
Anisotropic diffusion, 676(table)
Anisotropic mechanical properties, 584(table)
Anisotropy parameters
microstructures, 693, 719
temperature, 717, 720
textures, 571, 574–577, discussion, 756
thermal creep, 629–632, 633–634(table, figs), 639
Anneal hardening, 559–560, discussion, 754
Annealed Zircaloy, 674(fig)
Annealing parameters accumulated, 203–204, 211
beta-quenched zircaloy-4, 453, 464–466, 468(fig), 470–472(figs)
corrosion, 337–338, 349, 351, discussion, 743
heat treatment combinations, 130(table), 135
intermetallic precipitates, 421
post irradiation, 644
Annealing treatment
beta-quenched zircaloy-4, 472–475(figs)
scale growth, 382
Anodization curves, 250–251
Argon-ion etching, 507
Arrhenius behavior, 436, 443(fig), discussion, 751
ASME Boiler and pressure vessel code, 35
ASTM specifications
B 353, 5(figtn), 621
E 8, 625
E 139, 625
E 399, 736
E 813, 45, 85
E 1152, 71
G 2, 115, 145
UNS R 60804, 550
Atom probe specimens
electropolishing procedure, 427
Atom probes, 424–426, discussion, 749
Auger analysis of oxidized zirconium alloys, 498–514
Autoclave corrosion data, 231, 232(figs), 322(table)
Autoclave hydriding, 153–164 discussion, 732
Autoclave tests
chemical composition influences
Autoclave tests—Continued
on Zircalloys, 335–338,
discussion, 743
corrosion, 428–429(fig), 432
discussion, 749
corrosion performance rankings system
designs, 318–320(figs)
corrosion tests by atom probes, 426–428,
430(table),
discussion, 749
effect of oxygen on corrosion, 206(fig)
hydrogen pickup, 233, 234(table)
in steam, 132(fig), 137(fig)
weight gains of cladding materials spec-
imens, 326–332(figs), discussion, 742
Zircaloy-4 cladding, 151
Zircaloy-4 tubing, 128–140, discussion, 731
Zircaloy claddings—corrosion, 180 (ta-
ble)
zirconium-base alloys, 113–127, discus-
sion, 730
Autoclaved claddings. See Claddings.
AWBA. See Advanced water breeder ap-
plications
B
Behavior of thick/thin films, 14–18
Behavior of Zircaloy in reactors, 21–
23(figs), 266
See also Hydriding
Beta-quenching
oxidized zirconium alloys, 512–513
Zircaloy-4, 452–458(figs), 467(fig), 470–
471, 475
See also Quenching.
Bettis laboratory tests
Zircaloy clad fuel rods, 267
Biaxial creep, 585–586(fig), 597, 612,
613(fig)
Binary alloys, 501, 504–506, 509, 512–514,
discussion, 753
Black oxide films, 366–371
See also Oxide films
Blister growth
experimental techniques methods, 51–57
Blisters. See Hydride blisters.
Boiling water reactor (BWR)
nodular corrosion of zircaloy-2,
alloying element effects,
347–358, discussion, 744
Zircaloy cladding corrosion, 209–212
Zircaloy nodular corrosion, 291–313 dis-
cussion, 741
Breakaway growth. See Accelerated
growth.
Bristles. See Acicular structures.
Brittle fracture of zircaloy tubing, 521,
524
Burnup
in light water and pressurized reactors,
678
in nuclear power plants, 548–569
C
Calandria tubes, 247, 571
Canadian deuterium uranium pressurized
heavy water (CANDU-PHW)
Bruce nuclear generating station, 21
Pickering nuclear generating station, 21
pressure tubes, 21–34
Zircaloy pressure tubes corrosion and
hydriding, 16
Zr–2.5Nb pressure tubes cold-worked
compared to zircaloy, 21
CANDU-PHW. See Canadian deuterium
uranium pressurized heavy-water
reactors.
Carbon—effect on corrosion of zircaloy-4,
123(fig), 126
Chemical composition of zircalloys
influence on autoclave corrosion, 113–
127, 335–344, discussion, 730, 743
influence on corrosion performance of
fuel cladding, 214(table)
influence on steam corrosion, 128–140,
discussion, 731
relationship to irradiation temperature
and fluence, 667(table)
zirconium-niobium alloys, 479(table)
Chromium
corrosion behavior in zirconium alloys,
203, 228, 335–341(figs, tables),
354–356, 406–412(figs, tables), dis-
cussion, 745, 748
diffusion in alpha-zirconium and zircon-
ium alloys, 436–450, discussion, 751
effects of neutron irradiation, 642, dis-
cussion, 758–759
influence on scale growth, 380, discus-
sion, 746
oxidation in zirconium alloys, 498, 509–
510(fig), 513
CIRENE loop, 166–170(figs, tables),
176(table, fig)
Cladding
burst properties, 549–551, 552–553(tables), discussion, 754
corrosion resistance, 563
in-reactor/out-of-reactor test program, 316–317(tables)
lot-data, Zircaloy-4, 625(table)
measuring zirconium liner thickness, 392–402, discussion, 747
nucler fuel, 549
simulated fuel expansion(SIMFEX) testing, 518–534
tube corrosion—surface treatment comparisons, 331–332
zirconium alloy, 571–577(figs, tables), discussion, 756
Cladding corrosion
behavior, 360, 535
performance rankings of materials, 326–333, discussion, 742
Zircaloy fuel rods, 284
Zircaloy nodular corrosion, 292
Cladding ductility, 562–563
Cladding hydriding corrosion
Zircaloy fuel rods, 267
zirconium alloys, 152, 166, 214, 227 discussion, 739
Cladding material, 678
Cladding tubes—liner design, 392, discussion, 747
CMA. See Computer-aided microanalysis.
CODF. See Crystallite orientation distribution function.
Cold worked stress relieved (CWSR) zircaloy, 576, 585–590, 718
Compression properties, 583
Computer-aided microanalysis, 348(fig), 350–352, discussion, 744
Constitutive equation, 678–691
Coolant radiolysis, 16, 21, 280, 284
Copper compression properties, 583
Core compression rates, 521, 530–531
Corrosion
autoclave corrosion of zircalloys, 113–127, 128, 335–340 discussion, 731, 743
burnup, 231
CANDU-PHW reactors, 20–34, discussion, 727
chemical effects, 113–127, discussion, 730
cladding materials, 231
cladding tubes, 128, discussion, 731
cold-worked Zr–2.5Nb pressure tube effect of thermal ageing, 22(fig)
effect of low hydrogen uptake, 32, 268–269
hydride test materials, 155(table)
irradiated zircaloy fuel rods, 269–275(tables), 280, 292–294
lithium chloride accelerated, 187–201 discussion, 735
N reactor pressure tubes, 3–19 discussion, 725–726
nodular corrosion test, 292–301 (figs, tables)
nondestructive testing of tubes, 40–41 oxidation and hydriding effects, 5–17, 24–31
pressure tubing, 5–6(fig), 20–34, discussion, 727
Zircaloy cladding, 165–184, discussion, 734
Zircaloy-2 in Advanced Test Reactor (ATR), 246–247
zircaloy 4, 118–121(figs), 122(table)
zirconium alloys, 113–127, discussion, 730
Corrosion acceleration
with lithium chloride uptake tests, 187–201, discussion, 735
Corrosion analytical model, 166–170
Corrosion behavior
in steam, 129, 206
in Zircaloy-4 autoclave testing, 139
in zirconium alloys, 228
variables, 382–383(fig)
Corrosion data of Zr-Nb alloys, 231–233
Corrosion fatigue
behavior of zircaloy in iodine, 536–547(figs), discussion, 753
linked to stress corrosion cracking, 545
Corrosion kinetics, 166–172(figs, tables), 178–181(figs)
Corrosion resistant alloys
cladding, 242–245, discussion, 740–741
fuel cladding, 225
hydride cracking, 89, discussion, 729
in pressure tubes, 21–22
in Zircaloy-4, 141–152, 471, discussion, 732
influence of iron + chromium, 381
influence of tin content, 622–617, discussion, 757
scale growth, 379–381
Corrosion testing
beta quenched Zircaloy-4, 454, 462–463, 468(fig), 470–475(figs), 476
cladding alloy, 239–243, (figs, tables), 348
Corrosion testing—Continued
cold-worked Zr–2.5Nb pressure tube, 23(fig)
effects of iron + chromium content, 381
materials in pressurized water and steam, 115, 116–117(tables), 130
nodular corrosion, 292–301
Zircaloy-4 tubing, 135, 151(table)
zirconium alloys, for improved corrosion
resistance, 242–245, discussion, 740–741
zirconium alloys under irradiation, 247

Counting procedure—hydrides, 14
Crack growth rate
Zircaloy corrosion-fatigue, 536–541(figs), 544–545, discussion, 753
Crack initiation
fatigue life affected by iodine, 539–541(figs)
Cracking
oxidized zirconium alloys, 511
SIMFEX testing of zircaloy tubing, 517–518, 521, 525, 528
Cracks and crack velocity, 89–102, discussion, 729
Creep
deformation model, 636(table)
effect of crystal textures, 572, 586–588
influence of tin content in zirconium al-
loys, 622, 628–637(figs, tables), discussion, 757
Zircaloy cladding, 678–679
Creep behavior
Zircaloy cladding, 678–691
zirconium alloys, 574–590
Creep deformation, 597–607(figs), 615–616, 622, 636(table), 683–684, discussion, 757
Creep hardening, 686–690(figs)
Creep relaxation tests, 612–613(figs), 614–615(figs)
Creep testing
material properties, 680(table)
Zircaloy-4 cladding, 625–632(figs, tables)
Critical crack length (CCL), 76–77(figs)
Crystal plasticity models, 577–579, 587–590
Crystal structure, 409(table), 470
See also Acicular structures.
Crystallite behavior, 591
Crystallite orientation distribution function (CODF), 572–574(figs), 578, 584, 587, 589–592
Crystallographic data, ZrSn alloys, 482, 484–485(tables)
Crystallographic texture
Zircaloy-2, 304
zirconium alloys in the nuclear industry, 571–595, 706, discussion, 756, 761
Curie temperatures, 490(table)
CWSR. See Cold worked stress relieved.
CWSR cladding, microstructure, 626
Cyclic loading
creep behavior, 545
crack growth, 545
pellet cladding interaction and corrosion
fatigue, 535

D
Decay curves for zirconium, 252, 254(fig)
Defected fuel rods. See Fuel rods.
Deflection in zircaloy-2 tube, 40
Deformation
and creep—Zircaloy, 574–577, 597
anisotropic, 591, 623
behavior—zircaloy cladding tubes, 596
effects of cyclic loading, 544, 545
model for anisotropic deformation, 623
model for multiaxial creep, 622
model for polycrystalline aggregate, 591–592
temperature of irradiated zircaloy-4, 549, 558(fig), 560–562, 566, discussion, 754
transient deformation effects, 609
zircaloy cladding, 678
Density, dislocation, 669–670, 692–704, discussion, 759
Design
reactor pressure tubes, 35–36
Destructive measurement, 400–401(figs)
Deterioration in pressure tubes, 89, discussion, 729
Deuterium concentration profiles
zircaloy-2 pressure tubes, 41–47(figs)
Deuterium oxide uptake in pressure
tube tubes, 21, 24–31(figs)
Deuterium pickup
pressure tube surveillance in demonstra-
tion reactor, 35–39
Diffraction patterns, ZrNb alloys, 482–485
Diffusion, iron and chromium 432(table)
Dislocation channeling, 561–563
Dislocation density
accelerated growth, 668–671(figs)
effect of microstructures on irradiation, 698
effect of stress relieving pressure tubes, 22
effect of temperature on irradiation growth, 706, discussion, 761
Dislocation loop analysis, 661
Dislocation networks, 460
Dislocations, 658
Ductility of irradiated zircaloy cladding, 549, 562–563, 566, discussion, 754

Dislocation density
accelerated growth, 668–671(figs)
effect of microstructures on irradiation, 698
effect of stress relieving pressure tubes, 22
effect of temperature on irradiation growth, 706, discussion, 761
Dislocation loop analysis, 661
Dislocation networks, 460
Dislocations, 658
Ductility of irradiated zircaloy cladding, 549, 562–563, 566, discussion, 754

Fabrication processing.
See Manufacturing.

Failure
zirconium alloy specimens, 431
Fast neutron flux, 173–175(figs)
Fast neutron irradiation, 246
Fatigue crack growth rate, 544
Fatigue life
Zircaloy corrosion-fatigue behavior, 536, 539–540(fig), 545, discussion, 753
Fatigue tests, 536–547(figs), discussion, 753
Ferromagnetic iron precipitates of zircaloy, 496, discussion, 752

Fitness-for-service
Zircaloy-2 pressure tubes in demonstration reactor, 35–49, discussion, 727–728

Flow stress, transverse
vs temperature, 73(fig)

Fluence
accelerated irradiation growth of zirconium alloys, 658–665,
irradiated Zircaloy fuel rods, 282, 642–657, discussion, 758–759
irradiated Zircaloy-4, 551, 560(fig), 564–565(table), discussion, 754
neutron irradiation zircaloy-4, 646–657(figs, tables)
relation to chemical composition and irradiation temperature in zirconium alloys, 667(table)

Fluting under static loading, 545
Flux, 172–174
Fractography, 539–540, 543, 545
Fracture
hydride blisters, 50–65
irradiated zircaloy, 548–569
test results, 74(table)
testing technique, 53–54
Zircaloy tubing, 518, 520–532(figs, tables)

Fracture toughness
behavior, 81, 83–87, 103
brittle specimens, 86–87
critical crack length (CCL) determination, 76–80(figs)
hydrides, 66–88, 99(fig)
test methodology, 71–73(figs)
vs temperature, 75
Zircaloy pressure tubes, 45–47(figs)
Zr2.5Nb, 66–88, discussion, 729
Fracture toughness tests
methodology, 71–73(figs)

Fabrication histories
material corrosion resistance, 305
Zircaloy irradiated fuel tubes, 292
Fracture toughness vs temperature
zircaloy-2 specimens, 67(fig)
Fuel corrosion properties
irradiated zircaloy fuel rods, 269
Fuel cycle cost reduction, 360
Fuel performance, 678
Fuel rods
cladding alloy, 235, 236–237 (tables, figs),
growth, 643–648(figs, tables), discussion, 758–759
hydriding, external/ternal, 267–269
irradiated zircaloy, 266–288, discussion, 741
lifetime after fuel rod defects effect of heat flux, 282
neutron irradiation, 643–647 (figs, table)
ramp tests, 518
simulated fuel expansion (SIMFEX) testing of zircaloy tubing, 517–534
Fuel sheathing, Zr-Nb alloys, 478–486

G
Granulometry. See Precipitates.
Grain boundary, 692–704, discussion, 759
Grain size, 696(fig), 718–719
Graphite-lined tubing, 524(fig), 528–529
Growth kinetics
intermetallic precipitates, 412, 414–416, 418–419(figs, tables)
Ground claddings. See Claddings.
Growth
hydride blisters, 50–65
strain change, 699–701(figs)
temperature dependence, 659
Growth model, 694–695(tables)

H
Hanford site N reactor, 4
Heat flux, 172, 282, 285
Heat treatment—zirconium alloys
atom probe microanalysis, 426–427(table), 428–430, 432–433, discussion, 749
autoclave corrosion tests, 113–127 discussion, 730
magnetic study, 487–497
manufacturing process corrosion resistance, 141–152, discussion, 732
microstructure and corrosion studies, 202–212, discussion, 736
steam corrosion behavior, 128–140, 347–358(figs), discussion, 731, 744
High-pressure steam testing, 216
Hoop stress, 587(fig), 631(fig)
Hydride blisters, 50–65
Hydride blisters
characteristics, 57–663
characteristic of relation to blister depth, 59
detection technique ultrasonics, 51, 63
experimental techniques, 51–52
fracture testing, 58–59, 63–64
stress analysis, 63
Hydride crack velocity, 92–95, 100
Hydride cracking, 83, 89, 103, discussion, 729
Hydride distribution in pressure vessel tubes, 27, 43(fig)
Hydride morphology
effects on zr2.5Nb fracture toughness, 66–88, discussion, 729
Hydride test materials, 155(table)
Hydrides, 11–14
Hydriding
CANDU-PHW reactor pressure tubes, 20–34, discussion, 727
cladding materials for lightwater reactors, 154
hydrogen steam zircaloy tubing and sphere tests, 275
laboratory (out of reactor) results, 158–161(tables, figs)
N reactor pressure tubes, 5–7(figs), 11–23, 14
Zircaloy fuel rods, 267–275
Hydrogen concentration, 66–88, discussion, 729
Hydrogen distribution, 17
Hydrogen embrittlement of zirconium-niobium alloys, 478
Hydrogen in pressure tubes, 11–13(figs)
Hydrogen in steam
effect on rate of corrosion in zircaloy-2 tubes, 326
Hydrogen isotope concentration in-situ sampling, 41
Hydrogen migration
in irradiated Zircaloy fuel rods, 268–269, 284–285
in pressure tubes, 17
Hydrogen pickup
- irradiated Zircaloy fuel rods, 267, 281
- Zircaloy cladding, 225, 233, 241

Hydrogen solubility, 100

Hydrogen uptake of irradiated zircaloy-4, 549–567(figs, tables), discussion, 754

Hydrogen uptake concentrations, 30–32

Hydrogen utilization, 16–17

Hydrostatic stress, 83

I

Impurities—zirconium alloys, 113–127 discussion, 730

Ingot melting practices, 335 discussion, 743

In-pile corrosion testing
- Zircaloy cladding, 204, 207–210, 216, 222–226(table, figs)
- Zircaloy irradiated fuel rods, 269–276, 282
- Zircaloy-2 performance ranking, 315–333, discussion, 742

In-pile/out-of-pile corrosion data correlation, 332

In-reactor hydriding data base, 154,155(table)

In-reactor irradiation, 166

In-reactor nodular corrosion comparison of behavior with out-of-reactor tests, 309

In-reactor performance anisotropic creep behavior, 587–588

Inspection
- liner thickness measurement, 400(figs)

Intergranular corrosion crack initiation, 539–544(figs)
- stress, 542(fig)

Intermetallic particles autoclave tests, 338, 342
- chemical analysis, 218(fig)
- oxidized zirconium alloys, 501–502 size distributions, 134–135(figs), 221(figs,table)

Intermetallic precipitates
- iron and chromium, 642, 649, discussion, 758–759
- oxidized zirconium alloys, 498–514 Zircaloy cladding, 203, 343, zirconium alloys, 411–419(table, figs)
- Zr-Nb alloys, 478–486

See also Precipitates.

Internal stress
- Zircaloy-2 in superheated steam, 364–365, 370–371

Interstitial flow, 692–704, 717, discussion, 759

Iodine–SIMFEX test chemically embrittling additive, 518–519, 521–523(figs), 525–528(figs)

Iodine induced stress corrosion, 535–547

Iron
corrosion behavior in zirconium alloys, 203, 228, 335–341(figs, tables), 354–357(figs), 406–414(figs, tables), discussion, 743, 748
diffusion in alpha-zirconium and zirconium alloys, 436–450, discussion, 751
effects of neutron irradiation, 642
- in zirconium alloys, 498–502, 504, 509, 512–513, discussion, 753
- influence on scale growth, 380, discussion, 746

Iron precipitates of zircaloy Zr intermetallic precipitates, 483, 486, 496, 649, discussion, 752

Irradiated cladding tubes, 307

Irradiated Zircaloy fuel rods, 268–269

Irradiation
- effects of microstructural factors, 692–704, discussion, 759
- effects on corrosion of zirconium alloys, 245, discussion, 740–741
- fuel rods, 238, 266–269, discussion, 741
- hydriding properties of zirconium alloys, 154–156, 267
- lead test assemblies, 335 discussion, 743
- pressure tubes from CANDU nuclear reactors, 24(table), 20–34, discussion, 727
- temperature effects, 718–720
- temperature relationship to chemical composition and fluence, 667(table)
- test data, 277–279(tables)
- test programs, 235, 268–269
- Zircaloy cladding corrosion, 165–184, 214, discussion, 734

Irradiation growth accelerated—zirconium alloys, 658–677 during neutron irradiation, 667
effects of microstructural behavior, 695, 698
Irradiation growth—Continued
effects of temperature on irradiation
growth of materials, 707–715 (figs,
tables), discussion, 761
temperature dependence, 660(fig)
zirconium microstructures, 693–
694(fig), 695, 698–703(figs)
Zircaloy-4, 642, 643(table), 644–649
(figs, tables), discussion, 758–759
zirconium alloys, 658–660, 714–715, dis-
cussion, 761
Zr-Nb, 706

J
J-R curves—tension tests
Candu reactor pressure tubes, 73,
76(fig), 85

K
K reduction
stress/strain calculations at crack-tip re-
gion, 105–107(figs), 107–109 (Ap-
pendix)
KAHLWEIT theory, 414

L
Laboratory hydriding
methods, 156–158(figs, tables)
results and discussion, 158–163(figs, ta-
bles)
Lamellar structures, 454–456(figs), 459–
460(fig), 467–469
Langevin function, 491, 494
Lattice structures, 368(fig), 372, 409(table)
Lightwater reactor (LWR) cladding mate-
rials, 153, 360, 517, discussion, 732
Liner thickness
automatic measurement—system de-
sign, 392–394(figs, table), discus-
sion, 747
LiOH. See Lithium/lithium hydroxide.
Lithiated water, 234
Lithium/lithium hydroxide (LiOH) uptake
accelerated corrosion of zirconium al-
loys, 188–201(figs, tables)
cladding alloy, 227–244, discussion, 739–
740
Zircaloy claddings—models, 166, 175–
176, 178–179(figs)
zirconium under ultra violet irradiation,
256–258, 261
Load creep deformation, 597
Load-displacement curves, 583
Load relaxation
properties of zircaloy fuel cladding, 596–
597
tests, 598(table), 599–612 (figs, tables)
Loading history, 89, discussion, 729
Log stress/strain curves from relaxation
after creep, 613(fig)
Longitudinal loading, 546
Loops, 166–169, 667–668, 673, 718
LSW theory, 414

M
Magnetic susceptibility of zircaloy, 487–
489(figs), 496–497,
discussion, 752
Magnetization of zircaloy, 490–496(figs),
discussion, 752
Mandrel, expanding, test.
See Simulated fuel expansion (SIMFEX)
test
Manufacturing variables
influence on zircaloy corrosion, 335–
341(figs, tables),
discussion, 743
Martensitic, 466
Material composition, 143
Material properties
cladding alloy, 227–244, discussion, 739–
740
effects on nodular corrosion susceptibil-
ity, 306
neutron irradiation, 641–657
Materials for experimental procedures
autoclave tests, 114, 115(table),
ywide tests, 155(table)
Matrix composition, 423–424, 427(table),
428–431(tables, figs),
discussion, 749
Measurement, automatic—system design
liner tube thickness, 392–394(figs, ta-
ble), 398–400(figs),
discussion, 747
Mechanical properties
anisotropic—zircalloys/TREX, 571,
584(table), discussion, 756
tests of irradiated zircaloy-4, 550–
568(tables, figs),
discussion, 754
tubing of Zr-Nb alloys, 231(table)
Zircaloy-4 cladding, 622–627 (figs, ta-
bles), discussion, 757
zirconium alloys under irradiation, 155,
217(table), 548–569,
Discussion, 754
Mechanical testing, 215–216
Metal hydriding, 153–164, discussion, 732
Metallurgy
 test program for corrosion behavior, 142(fig)
 zirconium-niobium alloys, 479–481
Metallurgical material properties
 Zircaloy corrosion fatigue behavior, 536(table), discussion, 753
Microanalysis, 426, 430, discussion, 749
Microcomputerized image analysis, 479
Microhardness, 462, 468(fig), 472
Microstructural damage caused by neutron exposure, 49
Microstructures
 accelerated growth effects, 658
 beta-quenched zircaloy-4, 453, 458–473(figs), 475–476
 chemical compositions of tubes, 129 (table)
 effects on irradiation, 695–696, 698
 effects of temperature on irradiation growth, 706(table), discussion, 761
 intermetallic precipitates, 411–419 (figs, tables), 651(table), 652–656(figs, tables),
 discussion, 758–759
 iron precipitates, 649–650, 651(table)
 neutron fluences, 641–657
 oxide films in zircaloy-2 electron microscopy study, 360–373
 Zircaloy-2 and zircaloy-4 PWR fuel cladding, 213–226, discussion, 737–738
 Zircaloy-4 tubing, 128–140, discussion, 731
 zirconium alloys, 659
 Zr–2.5Nb pressure tubes, 20–34, discussion, 727
Model—hydride crack velocity, 100
Models
 anisotropic deformation model, 623
 corrosion analytical model, 166
 multiaxial creep, 622
 oxide growth model from corrosion data of heating rods, 166
 polycrystalline aggregates, 591–592
Model predictions, 581(table). 582(fig)

Neutrons: See Acicular structures, Oxide scale.
Network dislocation, 670–671, 718–720
Neutron exposure effects, 549
Neutron fluence, 646–649
Neutron flux, 172–175(figs)
Neutron irradiation
 accelerated growth, 658–659
 effects on beta-quenched zircaloy-4, 452–453, 463–465, 469–475(figs)
 effects on microstructure and growth, 641–657
 influence of tin in zircaloy-4, 622
 irradiation growth, 646–649 (figs, tables)
 zirconium alloys, 658
Nickel
 alloy contamination, 281
 compression properties, 583
 corrosion behavior in zirconium alloys, 335, discussion, 743
 diffusion in alpha-zirconium and zirconium alloys, 436–450, discussion, 751
 in Zircaloy, 496
Nickel in zirconium alloys, 203, 498–504(figs), 506–508(figs), 511(fig),
 512–513, discussion, 753
Niobium
 accelerated growth in zirconium, 672
 in cladding alloy for high burnup, 227–244, discussion, 739–740
 in irradiated zircaloy alloys, 563–566
 in zirconium alloys, 478–486, 695, 705–721, discussion, 761
Nodular corrosion
 influence of zircaloy chemical composition on autoclave tests, 335–341(figs, tables),
 discussion, 743
 irradiated fuel tubes corrosion tests, 308
 experimental testing procedures, 292–294
 fabrication histories, 293(table)
 magnetic study of zircaloy, 487, 497
 scale growth, 385–388
 treatment, 344
 Zircaloy cladding, 205(fig), 211
 Zircaloy-2, 348, 356–358
 Zircaloy-2 oxide films, 361–372(figs),
 discussion, 745
 Zircalloys, 291–314, discussion, 741
Zircaloy-2
 alloying elements, 348–350, 356–359, discussion, 744
 oxide films electron microscope study, 360–373
 performance ranking, 315–333,
 discussion, 742
Zircaloy-2—Continued
Scale growth, 375–378(figs), discussion, 746
Nodular corrosion resistance, 335–337, discussion, 743
Nodule formation, 388–390, discussion, 746
Nondestructive testing
evaluation of hydride blisters, 50–65, discussion, 728–729
of tubes—for corrosion, 40
NPD. See Nuclear power demonstration.
Nuclear fuel cladding, 392–402, discussion, 747
Nuclear fuel performance, 535
Nuclear power demonstration reactor, Rolphoton, Ontario, Canada
design, 36–37
pressure tube surveillance and testing, 35–49, discussion, 727–728
surveillance program, 35–49, discussion, 727–728
Nuclear reactor pressure tubes
composition, 5(table)
hydrogen content, 12–13(figs)
hydrogen utilization, 17
operating conditions, 6(fig)
oxidation rates, 9–11(figs, tables)
oxide thickness, 12(fig)
water quality specifications for coolant, 4(table)
Zircaloy behavior thick-film effect, 18
Zircaloy oxidation rates effects of radiolysis, 16–18
Zircaloy tubes, 4, 8–11

O
Ontario hydro CANDU nuclear reactors
pressure tubes surveillance program, 21
Optical microscopy, 461
Ostwald ripening, 414
Out-of-pile corrosion behavior
Zircaloy fuel cladding, 226, 276–277, 282–285
Out-of-reactor
performance tests of zircaloy-2, 315–333, discussion, 742
steam corrosion tests, 309
Oxidation
autoclave behavior, 343
corrosion of zircaloy cladding, 166, 181
in-pile fuel oxidation relationship to internal cladding
hydriding, 269, 280
irradiation of zirconium alloys, 245–265, discussion, 741–742
lithium uptake and accelerated corrosion of zirconium alloys, 191
low-temperature of zirconium alloys under irradiation, 245–265, discussion, 741–742
zirconium alloys under irradiation, 252–256
Zr–2.5 wt% Nb pressure tubes, 58(figs)
Oxidation data, 9–10(table)
Oxidation kinetics, 500–513(figs)
Oxidation cladding materials for lightwater reactors, 153, discussion, 732
irradiated zircaloy-4, 549
Oxidation rate
effect of radiation, 14
in-flux vs out-of-flux, 14–17
temperature effect, 15
thick/thin film behavior, 16
Oxidation reaction
hydrogen utilization, 16–17
Oxidation stress, 513–514
Oxide films
atom probe microanalysis, 428–429
effect of precipitates, 499(fig)
electron microscopy study Zircaloy-2, 368
inside surface corrosion—irradiated fuel rods, 269
nodular corrosion, 361–367(figs), 369–372(figs), discussion, 745
oxidation kinetics, 502–505(figs)
scale growth, 374, 378–379
Oxide growth, 264, 502
Oxide nodules
testing for corrosion, 298–308 (figs, tables)
Oxide porosity, 187–201, discussion, 735
Oxide scale, 379–381(figs)
Oxide thickness
corrosion resistance of experimental claddings, 317–318(fig)
Zircaloy-4 cladding, 549–551, 552–554(tables), 555–569, discussion, 754
Oxide weight gain, 321
Oxides
appearance in autoclave testing, 131
growth, 171
nondestructive testing of tubes, 40
porosity, 187–201, discussion, 735
pressure vessel tube examination, 24–28(figs)
thick/thin film effects, 16–18
thickness
in reactor pressure tubes, 5–10(figs), 41(fig)
lithium accelerated corrosion of zircaloy-4, 189–191(figs)
under ultraviolet irradiations, 248–257(figs)
Zircaloy-4 cladding, 143(fig), 146(fig)
Zircaloy cladding in pressure water reactors, 168, 204
zirconium alloys under irradiation, 248–251
thickness measurements, 248–249
thin oxides
indication of insufficient oxidant to maintain protection through oxidation, 31
Zircaloy, 3–19
discussion, 725–726
Zr–2.5Nb, 20–34
discussion, 727
Oxidized zirconium alloys, 498–514
Oxygen in steam
effect on rate of corrosion in Zircaloy-2 tubes, 326
Ozhennite fuel cladding, 228

P
Particle growth kinetics, 412–419(figs, tables)
Particle size distributions
intermetallic, 134–138(figs, table), 147(fig), 204, 218
Particle size of precipitates
Zircaloy magnetic study, 491–492
Pellet-cladding interaction(PCI)
SIMFEX testing of zircaloy tubing, 518–534
Zircaloy cladding behavior, 535
Percent theoretical uptake, 20–34
discussion, 727
Phase stability
beta-quenched zircaloy-4, 452
Photoconduction, 246–247, 256
Photocurrent curves, 251, 253–257
Pickering nuclear generating station pressure tube examination 24–27
Pickled claddings. See Claddings.
Pickling, 502
Pitting corrosion, 512
Plastic elongation, 705
Plasticity, 596
PNGS. See Pickering nuclear generating station.

Point-defect behavior, 697–698
Polarization, 191, 193–195(figs)
Pole figures, 571–574(figs),
discussion, 756
Polycrystalline materials, 499, 591,
discussion, 753
Porosity of oxide films, 195–197, 255,
260(fig), 262(fig), 263
Post irradiation annealing, 644
Precipitate density, 379, 385–386
Precipitates
See also intermetallic precipitates.
accelerated growth
atom probe analysis measurement, 429–430, discussion, 749
beta-quenched zircaloy-4, 452–461(figs), 463–466(figs), 469, 471, 476
corrosion behavior in zircaloy-4 tubing, 128–140, discussion, 731
effects of irradiation, 650–655(figs, tables), 656–657, discussion, 758–759
growth, 414–415
irradiation effects, 648–656(figs, tables),
discussion, 758–759
magnetic studies of zircaloy, 487–497
oxidized zirconium alloys, 498–514
size distribution, 652
Zircaloy nodular corrosion
material evaluation, 306–307(table)
texture measurement, 304(table)
zirconium, 448, 498
Precipitation, 20–34, discussion, 727
Prefilmed claddings. See Claddings.
Pressure tubing. See also Zircaloy behavior, 1–88
changes in shape
effect of irradiation creep and growth, elongation, diameter, deflection, 38–39(figs)
comparison, NPD and CANDU 600, 37(table)
corrosion resistance, 141–152,
discussion, 732
evaluation of zircaloy-2 in Nuclear Power Demonstration reactor, 35–49, discussion, 727–728
fracture toughness of material, 82
hydrides, 66–88, discussion, 729
nondestructive testing, 40(fig)
oxidation rates vs temperature, 11(fig)
Zr-Nb alloys, 478–486
waterside oxidation data, 9–10(table) vs operating time and surface temperature, 10(fig)
Zr–2.5Nb, 66–88, discussion, 729
776 ZIRCONIUM IN THE NUCLEAR INDUSTRY

Pressurized water reactors
fuel cladding corrosion performance mechanical testing, 215
operating conditions, 128,
discussion, 731
tube corrosion and hydriding, 3–19, 128
discussion, 725–726
Zircaloy cladding corrosion studies, 209, 215
Prism-slip model predictions, 581(fig, table)
Pseudo-cleavage
effect of cyclic/static loading, 544–546,
discussion, 753
Purity, specimen
effect on accelerated growth, 671–672

Quenched and tempered Zr–2.5Nb alloy, 228
Quenching
Zircalloys—performance testing autoclave corrosion, 335–343,
discussion, 743 corrosion performance, 215 corrosion resistance, 142–147(figs) nodular corrosion, 305, 347,
discussion, 744

RADIATION
Radiation
effect on oxidation rate, 14
Radiation anneal hardening (RAH), 559–560
Radiation exposures in Advanced Test Reactors, 247
Radiolysis of water
steam/hydrogen ratio, 280
Reactor coolant chemistry, 176
Reactor pressure tubes, 3–19
Recrystallization
autoclave corrosion, 342(fig), 343
cladding materials, 570–595
influence of iron and chromium on scale growth, 381
nodular corrosion, 349–352(figs)
Zircaloy-4 tubing, 131, 132(table), 133(figs)
Zircaloy-2 and zircaloy-4 fuel cladding, 225, 535
zirconium alloys irradiation, 246 nuclear industry applications, 571–595, discussion, 756

Refreshed autoclave. See Autoclave.
Relaxation(load) tests, 598–608(figs)

S
Scale growth, 374, 375–377(figs), discussion, 746
See also Oxide films
Scanning electron microscopy (SEM), 215, 217(figs), 479, 503(fig)
SCC. See Stress corrosion cracking.
Secondary hydriding. See Hydriding.
Sensitivity test data, SIMFEX test results 529–533
Sheet—Zircaloy
mechanical properties, 580(table)
textures, 571–579(figs, tables),
discussion, 756
Shippingport LWBR tests
Zircaloy fuel rods, 267
Shot-peening, 512
Simulated fuel expansion testing(SIMFEX), 517–534
Silicon—effect on corrosion in zircaloy-4, 123(fig), 139
SIMFEX. See Simulated fuel expansion.
Single crystals—zirconium alloys, 436, 440–442(figs), 444–445, discussion, 751
Size-effect correlation, 445–447(figs)
Solubility
chromium/iron/iron + chromium in Zr–Sn–O system, 407–411, (tables, figs), 419
Specimen preparation for zircaloy-2 testing, 320–321
Spines. See Acicular structures.
Stacking faults, 672
Static autoclaves. See Autoclave.
Static loading, 545
Steam corrosion testing, 152(fig), 154, 227–244, discussion, 740–741
Steam tests
Zircaloy nodular corrosion, 291–314, 348–350(figs), 355, 358,
discussion, 741
Strain
SIMFEX testing of tubing liner materials; graphite, zirconium, Zircaloy, 518, 524, 528
See also Stress/strain
Strain hardening, 684–686(figs)
Strain recovery, 678–691
Strength of material, 89, 102,
discussion, 729
Stress change in creep deformation, 683(figs)
Stress corrosion cracking (SCC)
Zircaloy in iodine environment, 535, 538–545(figs)
Stress/strain
creep behavior of zircaloy cladding, 683–686(figs)
finite element analysis of constant K, 105–107(figs), 107–109(Appendix)
hydrides, 70–76, 90–100
intensity factor, 104, 540(fig), 541
SIMFEX testing of tubing liner materials: graphite, zirconium, zircaloy, 518, 524, 528
temperature effects, 720
Zircaloy cladding tubes, 596–617
zirconium alloys—texture, 577–595
Stress/strain curves, 613(fig)
Striation, 96(fig), 98(fig), 103–104
Superheated steam—oxide film formation, 361–364, 368–370, discussion, 745
Superparamagnetic state—Zircalloys, 491, 497
Surface finishes, 499, 504, 507–512, discussion, 753
Surface treatments
effects of different treatments on corrosion resistance, 331(table)
Surveillance program
Zircaloy-2 pressure tubes, 35–49, discussion, 727–728

T
Temperature change in creep deformation, 684(fig)
Temperature deformation behavior, 591
Temperature dependence
 corrosion testing
 Zircaloy nodular corrosion, 294–301(figs, tables), 310–312, 322(figs, tables)
 Zircaloy-4 tube variants, 129
 crack velocity, 102
 effect on accelerated growth, 672
 hydrogen migration, 17
 irradiated zircaloy-4, 558–559(figs)
 irradiation growth of zirconium alloys, 660(fig), 661–664(figs)
 neutron irradiation, 642–643, discussion, 758–759
 oxidation rates, 15–17
 stress/strain, zircaloy cladding tubes, 596–617
 Zircaloy-2 pressure tubes, 45(fig)
 Temperature effects on irradiation growth of zirconium alloys, 716–717, discussion, 761
 Tensile load, 581
 Tensile properties
 irradiated zircaloy, 546–567, discussion, 753
 Tension/relaxation
terminal solid solubility—hydrides, 100–101(fig)
tests, 72–73(figs), 598(table), 599–614(figs, tables)
Tension tests
Zircaloy, effects of irradiation, 549, 553, 554(table), 556(table), discussion, 754
Zircaloy in iodine, 536–538(figs), discussion, 753
Test facilities operating conditions, 170(table)
Test methods
 crack velocity, 90–95(figs, table)
 hydride morphologies, 67–71(figs, tables)
 specimen preparation, 71
 hydrides in pressure tubes, 43(fig)
 hydriding test materials, 155(table)
 mechanical properties of pressure tubes, 43–48(figs)
 SIMFEX tests, 519–520
 stress/strain—zircaloy cladding tubes, 597–617
 Testing
 Zircaloy nodular corrosion comparison of in-reactor behavior with out-of-reactor tests, 309–310
 Texture
 influence on crack behavior, 545
 zirconium alloy, crystallite orientation, 570–595
 Texture analysis, 631–632(table), 635–636
 Thermal ageing
 effects on beta-quenched zircaloy-4, 451–477
 of Zr–2.5Nb pressure tubes, 22–23(figs), 32
 Thermal and elastic expansion, 705
 Thermal efficiency
 irradiated zircaloy, 548–569
 Thermal/hydraulic environment of fuel rods
 analytic description for corrosion model, 166
Thermal hydraulic environment of fuel rods—Continued
corrosion data, 166–170(figs, tables)
experimental values of corrosion kinetics, 167–168(fig)
Thermal history, 89, discussion, 729
Thermodynamic data—radiolysis of water, 280–281
Thermomechanical processing, 338, 480, discussion, 752
Thick/thin film behavior, 16–18
Thick oxides, 3–19
Thickness
automatic measuring system for liner tube thickness, 392–394(figs, table), discussion, 747
Thin oxides, 3–19, 27
3D transition elements
in alpha-zirconium and zirconium alloys, 437(table), 442–448
Tin
accelerated growth in zirconium alloys, 672
corrosion behavior in zirconium alloys, 123–126, 228, 335–341(figs, tables), 348, discussion, 743
in Zircaloy-4, 621–640
Tracer diffusion, 436, 437(table), 438–444(figs), discussion, 751
Transmission electron microscopy (TEM), 427, 478, 661
Transverse loading, 546
TREX. See Tube reduced extrusion.
Triple vacuum arc melting, 335, discussion, 743
Tube operating conditions. See Corrosion, Hydriding.
Tube reduced extrusion (TREX)
high burnup cladding alloy, 228–229
Zircaloy cladding 147–150(figs, tables)
zirconium alloy crystallographic textures, 571–572, 575(figs), 580–583, 590, discussion, 756
Tubes. See Pressure tubes.
Tubing
simulated fuel expansion (SIMFEX) testing, 517–534
zirconium cladding alloys, 228–231 таблиц, figures, 570–595
U
Ultrasonic detection technique
hydride blisters, 51
Ultraviolet irradiations
zirconium alloys, 248, 252, 254–255
Uniaxial creep, 585–586, 597, 612, 613(fig)
Uniform corrosion, 205(fig), 432–433, discussion, 749
V
Vacancy, 692–704, discussion, 759
Von-Mises yield criterion for anisotropic material, 574
W
Water
autoclave testing of zircaloy cladding, 227–244, discussion, 740–741
Water corrosion of zircaloy, 282
Waterside corrosion. See Nodular corrosion.
Weight gains
autoclave corrosion testing, 339–342, discussion, 743
cladding material specimens, 323–331(figs)
nodular corrosion, 344
Widmanstatten, 466
Z
Zircaloy
caladria tubes, 50
CANDU-PHW reactor, 20–34 discussion, 727
cladding
high burnup, 227–244, discussion, 740–741
neutron fluences, 648–649(figs)
creep behavior, 678–691
effect of irradiation and hydriding, 548–569
evaluation of NPD (Nuclear power demonstration) reactor, 35–49, discussion, 727–728
fuel cladding material, 128, discussion, 731
fuel rods, 646–648(figs)
y nidring, 154, 266–288, discussion, 741
in/out reactor behavior, 21–23(figs)
material preparation for experimental procedure, 114
neutron irradiation, 648–650(figs)
oxidation rates, 15–17
oxide thickness, 30
pressure tube examination, 24–29
pressure tube oxidation rates, 8–14(figs), 16–17
pressure tubes, 128, 213, discussion, 731, 737–738
PWR fuel cladding, 213–226, discussion, 737–738
recrystallized claddings/TREX, 572–581
rod and capsule tests
in-pile cladding hydriding, 270–271, 271–275(figs, tables)
surface properties, 281
surveillance program, 38–39
thick film effect, 18, 25(figs)
Zircaloy cladding tubes
crystallographic textures, 570–595
stress/strain characteristics, 596–617
Zircaloy corrosion
autoclave, 335–344(figs, tables), discussion, 743
behavior
effect of chemistry, 123(fig, table), 124
Zircaloy-4 in steam/heat treatment—correlation, 128, discussion, 731
zirconium alloy autoclave tests, 113–127, discussion, 730
cladding, 165–184, discussion, 734
iodine assisted corrosion fatigue, 536, discussion, 753
irradiated fuel rods, 268–283
scale growth in steam, 374–380(figs)
discussion, 746
stress linked to corrosion-fatigue behavior, 535–547
See also Zircaloy
Zircaloy nodular corrosion, 291–314, discussion, 741
Zircaloy oxidation kinetics, 498–514
Zircaloy tubes
neutron irradiation, 647
simulated fuel expansion(SIMFEX) testing, 517–534
textures, 571–595, discussion, 756
Zircaloy-2
chemical composition, 214(table)
cladding tubes, thickness
discussion, 747
measurement, 392–402,
corrosion performance
boiling water reactors(BWR), 315–333, discussion, 742
PWR fuel cladding, 213, discussion, 737–738
corrosion studies, –212
ingot chemistry, 335(table)
liner thickness, 395, discussion, 747
magnetic study, 487–497
nodular corrosion
boiling water reactors(BWR), 348–350, 356–358, 361–362(figs), 368–371(figs), discussion, 744, 745
oxidation kinetics, 498–514
oxide films electron microscopy study, 360–373
Zircaloy-4
atom probe microanalysis, 426–430(figs, tables), discussion, 749
beta-quenched, 452–458(figs), 467(fig), 470–471, 475
chemical composition, 214(table), 427(table)
corrosion resistance, 141–152, discussion, 732
corrosion studies, 202–212, discussion, 736
effect of tin content, 621–640
external corrosion model, 166
fuel cladding, 621
heat treatment, 427(table)
intermetallic precipitates, 405, 411, 418
lithium accelerated corrosion, 188–189
magnetic study, 487–497
thermal creep—influence of tin content, 621–640
Zirconium alloys
accelerated irradiation growth, 658–677
autoclave corrosion, 335–344(figs, tables), discussion, 743
cladding, 227–244, 570–595, discussion, 740–741
corrosion, 113–127, discussion, 729
crystallographic textures, 570–595
diffusion behavior, 436, 437(table), discussion, 751
dissolution under ultraviolet irradiation, 262–263
hydriding properties under irradiation, 153–164, discussion, 732
iron, chromium and nickel diffusion, 436–450, discussion, 751
iron and chromium solubility, 406–414(figs, tables), discussion, 748
irradiation effects on corrosion, 245, 436,
Zirconium alloys—Continued
laboratory tests methods, materials, results, 155–163(figs, tables)
microstructure effects on irradiation, 694–695
oxidation under irradiation, 245–255, discussion, 741–742
simulated fuel expansion (SIMFEX) testing, 517–534
transition elements, 435–450
ultraviolet irradiations, 248(table)
Zircaloy-2, 35
Zr–2.5 wt% Nb, 89, discussion, 729
Zirconium-based advanced alloy for improved corrosion resistance, discussion, 241–243
Zirconium hydrides
cracking, 89–110, discussion, 729
fuel rods, 266–288
Zirconium lined tubing
design, 394–398(figs)
simulated fuel expansion (SIMFEX) testing—graphite, zirconium, Zircaloy, 518–529
Zirconium-niobium alloys, 478–486
Zirconium oxide film, 281
Zirconium phases—alpha/beta
at extrusion temperature, 21
precipitation effects, 27–28
Zirlo, 239(fig), 243
Zr-cladding, 570–595
Zr(FeCr), 481–485
Zr-Nb alloys (zirconium-niobium)
chemical analyses, 479(table)
effects of microstructural factors on irradiation, 693–698, discussion, 759
intermetallic precipitates, 481–484
thermomechanical processing, 480
Zr,Fe, 482–485(figs, tables)
Zr,Fe
crystallographic data, 482, 484–485(tables)
Zr–2.5Nb fuel cladding, 228
Zr–2.5Nb pressure tubes
cold-worked
irradiation histories, 24(table)
microstructural changes after thermal ageing treatment and corrosion testing, 22–23(figs)
deuterium concentration, 24–27(figs), 32
fracture toughness, 66–88, discussion, 729
high resistance to hydrogen pickup, 30
in-pile corrosion behavior, 228
irradiation, before/after microstructures, 29(fig), 32
oxidation, 25(fig), 29(fig), 32
oxide thickness in CANDU PHY reactor, 20–34, discussion, 727
toughness affected by temperature, 83
Zr–2.5 wt% Nb
effect of temperature on irradiation growth, 705–721
lithium hydroxide corrosion behavior, 188
Zr–4
stress corrosion to corrosion fatigue behavior, 535–547