Subject Index

A

Alkylbenzene
- chemical ionization-proton exchange analysis, 42, 44-45
- Kendrick mass analysis, 188-189
- metastable spectra, 107-108
n-Alkylbenzenes
- GC/MS analysis, 108-109
 Arabian Heavy asphaltenes, 108-109
- CH₃-S combinations, Kendrick masses, 182, 185-186
- CH₄S combinations, Kendrick masses, 182, 185-186
- Chemical ionization (CI) (see also Ammonia chemical ionization; Isobutane chemical ionization)
 coal-derived liquids, 145
 metalloporphyrins, 84-92
 reagent gas pressure, 138
 role in SFC-MS, 21
- SFC-MS interfaces and flow restrictors, 9
- sterane analysis, mass spectrometry, 49
- Chemical ionization-proton exchange (CIPE), 3
 jet fuel analysis, 38-45
 peak identification, 45
- CHY software program, 185, 188
- Coal-derived liquids
 chemical ionization-proton exchange analysis, 40-43
 low-voltage mass spectrometry, 144-153
- SFC-MS analyses, 10-21
- Coal extracts
 LVHRMS-direct insertion probe, 116-125
 molten-caustic treatment, 117
 preparation, 117
 raw versus molten-caustic-treated, 126-131
- Coal tar, SFC-MS analyses, 7-8, 10-11
- Collisionally activated dissociation (CAD) metalloporphyrins, 85

B

Benzene, chemical ionization-proton exchange analysis, 40-43
- Biomarker analysis, gas chromatography/mass spectrometry, 3
- Biomarkers, 59-60
- Buddingtonite, pyrolysis of, 141-142

C

- Carbon combinations, Kendrick masses, 182, 185-186
- CH₄S combinations, Kendrick masses, 182, 185-186
- Chemical ionization (CI) (see also Ammonia chemical ionization; Isobutane chemical ionization)
 coal-derived liquids, 145
 metalloporphyrins, 84-92
 reagent gas pressure, 138
 role in SFC-MS, 21
 SFC-MS interfaces and flow restrictors, 9
- sterane analysis, mass spectrometry, 49
- Chemical ionization-proton exchange (CIPE), 3
 jet fuel analysis, 38-45
 peak identification, 45
- CHY software program, 185, 188
- Coal-derived liquids
 chemical ionization-proton exchange analysis, 40-43
 low-voltage mass spectrometry, 144-153
 SFC-MS analyses, 10-21
- Coal extracts
 LVHRMS-direct insertion probe, 116-125
 molten-caustic treatment, 117
 preparation, 117
 raw versus molten-caustic-treated, 126-131
- Coal tar, SFC-MS analyses, 7-8, 10-11
- Collisionally activated dissociation (CAD) metalloporphyrins, 85
Computer programming (see Hardware; Software programs)
Contamination, tandem mass spectrometry, 56, 58
Crude oil, sterane traces in, 47–58

D
Deuterium exchange, chemical ionization-proton exchange analysis, 40–43
Diesel fuel
SFE-MS analysis, 10–21
methane CI mass spectra, 10, 13
Dipyrrole fragments, pyrrole formation, 89–92
Direct fluid injection (DFI)
mass spectrometry, 10, 12–15
SFC-MS interfaces and flow restrictors, 9
Direct-insertion-probe technique, LVHRMS
Bevier coal extracts, 123–125
coal-derived materials, 116–125
Direct-probe inlet mass spectrometry, 16–17
DS-55 software system, 119–120

E
ECNCI
sterane analysis, 49
methane-enhanced, 50–51
Electron impact spectra
CIPE analysis and, 39
daughter spectra, 62, 64
full-scan, 62–63
Electron ionization (EI)
geoporphyrin analysis, 92
metalloporphyrin, 3, 84–92
mass spectra, 86
porphyrin mass spectrometry, 87–88
SFC-MS interfaces and flow restrictors, 9
sterane analysis,
daughter mass spectra, 51–52
mass spectra, 49
Electron ionization mass spectrometry (EIMS), 134
Expert systems, 159–171
comparisons with other analytical methods, 171
future research trends, 170–171
GC/MS fossil fuel analysis
evaluation and reliability, 170
experimental systems, 162–163
future research, 170–171
hydrocarbon carbon number assignment, 165
main principles of, 163–170
molecular ion search, 165–166
need for, 160–162
n-paraffin identification, 163–165
quantitation and sorting, 167–170
structure assignment, 166–167
type analysis, 164
human expert comparisons, 170–171
schematic, 161

F
Factor analysis
Factor I spectra, 152, 156
Factor II spectra, 152, 156
hydrotreatment data, 148, 151–153
Factor spectrum
hydrotreatment data, 148, 152–155
time/temperature trends, 153, 155
Fast atom bombardment (FAB), 1
Field ionization (FI), coal-derived liquids, 145
Flame ionization detection
CIPE analysis and, 38
gas chromatography and, 27
supercritical fluid chromatography, 5–6
Fourier transform infrared spectroscopy (FTIR), 134

G
Gas chromatography (GC)
apparatus, 3-m DuraBond system, 26
component discrimination, 27–31
flame ionization detection, 27
fossil fuel analysis, 159–171
mass spectrometry (GC/MS) (see Gas chromatography/mass spectrometry)
sample introduction methods, 27–28
sterane analysis, 48–49
Gas chromatography/mass spectrometry (GC/MS)
n-alkylbenzothiophenes/n-alkylbenzenes, 95–115
apparatus used, 26–27
ASTM comparisons, 33–37
biomarkers, 60
INDEX 199

CIPE analysis and, 39
coal-derived liquids, 145
comparisons with MS/MS, 2
computer hardware and software, 27
expert systems, 160-162
fuel variations, 34-37
HTA sample introduction methods, 27-31
hydrocarbon analysis, 3
injection port temperature versus area ratios, 27-30
ion summation chromatograms, 27-28
jet fuel analysis, 24-37
limits of detection, 31, 33-34
short column and simulated distillation, 25-27
software programs for, 159-171
splitless versus on-column injection, 30-31
sterane analysis, 52-53
Geoporphyrins
defined, 84-85
El and ammonia CI analysis, 90

H

Hardware (computer), Hewlett Packard-Interface Buss (HPIB), 135
Heuristics, expert systems, 161-162
HFR interface, SFC-MS analysis, 15
High Resolution Mass Spectral analysis, Kendric masses and, 172-193
Hydroaromatics, hydrotreatment effect, 156-157
Hydrocarbon
carbon number assignment, 165-166
homologs, coal extracts, 119-120
LVHRM-direct-insertion-probe techniques, 124
Hydrocarbon-type analysis (HTA), 3
fuel variations, 34-37
jet fuels, GS/MS, 24-37
sample introduction methods, 27-28
versus ASTM test methods, 33-37
Hydrogen ion, ammonia determination, 140
Hydrotreatment effect, 4
average mass spectra, 148-150
coal-derived liquids, 144-153
sample identification, 145-146
Hydroxy-polynuclear aromatic hydrocarbons, 20-21

I

IF-THEN-Else rules, 162
Indans, chemical ionization-proton exchange analysis, 40-43
Injection techniques
area ratio accuracies, 31
gas chromatography, 28-31
Integrated Two-Stage Liquefaction (ITSL)
coal-derived liquids, 144-146
schematic, 145-146
Ion current instability, direct-insertion-probe techniques, 120-121
Ionization techniques, 1-3
Isobutane chemical ionization
ammonia determination, 137-138
ammonia from oil shale pyrolysis, 133-142
ammonia volume versus concentration, 149
isobutane fragment monitoring, 138-140
quadruple analyzer transmission, 138
reagent gas pressure, 138
secondary electron multiplier (SEM) gain, 138

J

Jet fuel analysis
CIPE method, 38-45
coal-derived, 40-43
GS/MS hydrocarbon-type analysis, 24-37

K

Kendrick masses, 4
12C mass, 174-175
defect, 175
factor, 175
high-resolution mass spectrometry and, 172-193
root mean square errors, 189
Knowledge engineering, 162

L

Laser desorption, 1-2
Liquid chromatography/mass spectrometry (LC/MS), 145
LISP language, 162
Low-voltage high-resolution mass spectrometry (LVHRMS), 4
direct-insertion-probe technique
formula class distributions, 123
summary of compound types, 122-123
Low-voltage, high-resolution mass spectrometry
direct-insertion probe and coal-derived materials, 116-125
Low-voltage mass spectrometry
coal-derived liquids, 144-153
multivariate analysis and, 4
schematic diagram, 147

M

MAP, n-alkylbenzenes analysis, 95, 97-103
Marine diesel fuel, SFC-MS analysis, 10, 12
Mass spectrometry (MS) (see also Tandem mass spectrometry (MS/MS))
n-alkylbenzothiophenes and n-alkylbenzenes, 95-115
apparatus, MAT TSQ45, 26
chemical ionization-proton exchange and, 38-45
coal-derived liquids, 145
gas chromatography (see Gas chromatography/mass spectrometry (GC/MS))
jet fuel analysis, 24-37
low-voltage high-resolution (see Low-voltage high-resolution mass spectrometry (LVHRMS))
metalloporphyrins, 84-85
overview, 1
software programs for, 159-171
sterane analysis, normal MS, 49-51
supercritical fluid chromatography (see Supercritical fluid chromatography/mass spectrometry (SFC/MS))
Medium-resolution SIR, 62, 65
Metalloporphyrins
chemical ionization, 84-92
electron ionization, 84-92
Metastable ions, multiple reaction monitoring, 60-64
Methane chemical ionization, metalloporphyrins, 84-85
Methylene, repeating unit concept, 173
Microbore SFC-MS, 15-21
hydroxy-PAC fractions, 20-21
Molecular ions, 165-166
Molten-caustic-treated coal extracts,
LVHRM-direct-insertion-probe techniques
Bevier coal extracts, 123-124
mole percent determinations, 126-131
Monoaromatics, hydrocarbon carbon numbers, 165-166
Monooxygenated compounds, LVHRM-direct-insertion-probe techniques, 124
MS/MS (see Tandem mass spectrometry)
Multiple reaction monitoring
crude oil extracts used, 60-61, 65
sterane responses, 65, 67-70
triterpenes, 65, 75-78
Multivariate analysis, standardization, 148

N

Nitrogen-containing polycyclic aromatic hydrocarbon (NPAC)
LVHRM-direct-insertion-probe techniques, 124-125
mass spectra from, 16, 18-19, 21
SFC-MS analysis, 16-17
Nominal mass Z series (NMZ)
first array combinations, 182, 184
rectangular array concept, 174-182
unassigned peaks, 175, 180-183
N-paraffins, expert system identification, 163-165

O

Octaethylporphyrin, EI and ammonia CI analysis, 86-92
Oil-oil correlation, multiple reaction monitoring, 65-83
Oil shale (see Shale oil)
On-column injection, gas chromatography, 30-31
One-ring aromatic neutrals, Kendric mass rectangular array, 175-182
On-line mass spectrometry, ammonia from oil shale pyrolysis, 133-142
Organosulfur compounds (see Sulfur)

P

PCI, sterane analysis
daughter mass spectra, 52-53
MS/MS, 49
Petroleum analysis, high-resolution mass spectrometry and, 172-193
Plasma desorption ionization, 2
INDEX

Polar modifiers, supercritical fluid chromatography and, 7–9
Polynuclear aromatic hydrocarbons (PNAs)
hydrogenation effect, 156–157
MS/MS analysis, 2
Pressure programming, SFC-MS analysis, 15–16
PROB software program, 185, 188
Programming for fuel analysis (see Software programs)
Prophyrins, SFC-MS analyses, 10–21
Pyridine dialyzate, direct-insertion-probe techniques, 121–123
Pyrolysis
Buddingtonite, 141–142
GC/MS
n-alkylbenzothiophenes, 95
Arabian Heavy asphaltenes, 105–106
metastable spectra, 107–108
sulfur in, 105
oil shale, 4, 133–134
Pyrrrole formation, mono and tripyrrolic fragments, 89–92

Q
Quadruple analyzer transmission, isobutane chemical ionization, 138
Quantitation, hydrocarbon mixtures, 167–170

R
READTAP software program, 182, 185
Reconstructed ion current (RIC)
hydrocarbon-type analysis, 31, 33–34, 167–168
Rectangular array
ion formulas, 172–193
second array combinations, 189–192
Retort, ammonia determination
SS retort, 135–136
steam retort, 140–142
RETROFIT software program, 118–120

S
Secondary electron multiplier (SEM) gain, 138
Secondary ion mass spectrometry (SIMS), 1
Selected ion recording (SIR), 60–62, 65
Separation techniques, overview, 1–2
Shale oil, pyrolysis, 4, 133–134
sterane traces in, 47–58
Short column GC/MS, 25–27
SIGMA software system, 148, 151
Simulated distillation, GC/MS, 25–27
Software for fuel analysis
CHY program, 185, 188
DS-55 system, 119–120
HP 3497A thermocouple conditioning and digitizing system, 135
HRMS data analysis, 182, 185
IBM CAPMC4 Chromatography Applications Program, 27
mass spectrometry data with, 4
PROB program, 185, 188
READTAP program, 182, 185
RETROFIT program, 118–120
SIGMA system, 148
SPECTR program, 182, 185
XFER program, 182, 185
Solid probe analysis
confirmation, 56–57
sterane analysis, 49
tandem mass spectrometry, 53–57
Sorting
carbon numbers and isomers, 169–170
hydrocarbon mixtures, 167–170
isomer summing, 169
Specific Z series (SPZ), 174–182
one-ring aromatic neutrals, 175–181, 193
SPECTR software program, 182, 185
Splitless injection techniques, 29–31
SS retort, ammonia determination, 135–136
Stability index (SI)
defined, 85
doubly charged ions in EI, 88–89
electron ionization and, 3–4
fragmentation under Ammonia CI, 88–89
metalloporphyrin reactivity, 85
pyrrole formation, 89–92
Steam retort, ammonia determination, 140–142
Steranes
biomarkers, 59–60
carbon number distribution, 58
marine oil, 65, 67–70
molecular formulas and standard weights, 48
multiple reaction monitoring peak identifications, 65–66
tandem mass spectrometry
abundance measurements, 55–56
crude and shale oils, 47–58
parent spectra, 53–55
terrestrial oil, 67, 71–74
Structure assignments, hydrocarbon mixtures, 166–167
Sulfur
n-alkylbenzenes and, 95, 97–103
coal extract removal, 119–125
LVHRM-direct-insertion-probe techniques, 123–125
Supercritical fluid chromatography (SFC), 203
flame ionization detector, 5–6
Supercritical fluid chromatography/mass spectrometry (SFC/MS), 3, 5–21
direct fluid injection (DFI) and, 10–15
experimental procedure, 6–7
fossil fuel analysis, 10–11
hydroxy-containing polynuclear aromatic compounds, 20–21
interfaces and flow restrictors, 9
microbore techniques, 15–21
nitrogen-containing polycyclic aromatic hydrocarbon (NPAC), 16–19
polar fluid and column development, 7–9
polar sediments from marine diesel fuels, 10, 13
pressure programming, 15–16
split injection techniques, 15
Supercritical fluid extraction (SFE) fossil fuels, 10, 13–15
mass spectrometry and, 6–7

T
Tandem mass spectrometry (MS/MS)
contamination and chemical interface, 56, 58
metalloporphyrins, 85
overview, 2
solid probe configuration, 56–57
sterane analysis
CAD daughter spectra, 51
El-CAD daughter spectra, 51–52
sterane traces, 3, 47–58
Tetralins, chemical ionization-proton exchange analysis, 40–43
Thermospray, 2
Trimethylamine, isobutane chemical ionization, 140
Triple quadrupole mass spectrometry (TQMS)
ammonia determination, 134–135
nitric oxide, 136–137
Tri-sector geometry, multiple reaction monitoring, 61–62
Triterpene biomarkers, 59–60
marine oil, 65, 76–78
multiple reaction monitoring, 65, 67
terrestrial oil, 79–83

U
Ultraviolet absorption detection, 5–6

V
Variance Diagram Technique, hydrotreatment data, 152–154

X
XFER software program, 182, 185