Subject Index

A

AAPT (see Association of Asphalt Paving Technologists)

Activation energy
sulfur asphalt filler blends, 178

Aggregates, 42–43(figs), 45, 46

Aging
polymer-modified asphalts, 147, 148(table), 149
sulfur asphalt binders, 167, 170

Asphalt and mix rheology, 4, 19, 101, 180
effect on pavement cracking, 99
mechano-lattice analysis, 77
non-Newtonian properties, 30
test methods lack precision, 29

Asphalt binders, 166

Asphalt cements, 101
properties, 102(table)
tests
cracking, 104(table), 105–107(figs, table)
penetration-viscosity, 108(table)
polymer-modified, 148(table), 149(table)
rheological properties, 105
temperature, 103(table), 109(table)

Asphalt concrete, 1, 2, 26
mechano-lattice analysis, 76
mix stiffness, 19, 20–22(figs)

Asphalt concrete properties, 189

Asphalt mix design, 41, 44–45, 76, 99

Asphalt Modulus, 182, 183, 192

Asphalt nomograph, van der Poel, 32–33, 34(fig)

Asphalt pavement life
influence of plastic mixtures, 76, 97

Asphalt-Polymer Modulus, 182, 183, 192

Asphalt pavements, 39–41, 45, 47, 49
construction, 29, 35
tests and performance, 100
thermal response, 12, 27

Asphalt specifications, 119

Asphalt viscosity, 7, 8(fig), 13–18(figs), 27, 30
stress-strain relationship, 19–23(figs), 31
tensile strength relationship, 25(figs)

Asphalts, polymer-modified, 51, 146
temperature relationships, 33, 51–75
measurement under roadway conditions, 39(fig)

Association of Asphalt Paving Technologists
force ductility test, 151
ASTM standards
C-496-85, 189
D-5-75, 181
D-113-79, 164, 181(fig)
D-412-80, 153, 160, 161, 163
D-1559-82, 147
D-1754-83, 149
D-2170-82, 181
D-2872-80, 149
D-3381-81, 149, 161, 162
D-4123-82, 189

B
Bearing capacity, 29, 36–38(table), 45, 46(figs), 47, 48–50
Binders
polymer-modified asphalts, 147, 153(table)
sulfur asphalt, 167
Bingham plastic, 122, 124(fig)
Bitumens, performance, 119, 122
ductility, 151
temperature changes can alter rheological behavior, 123
thixotropic behavior, 125
Bituminous materials, rheology, 30, 119
Bituminous paving mixtures
polymer-modified asphalts, behavior of, 147
stiffness modulus, determining, 72(fig)

C
California Method of Test Recovery from Deformation of Latex Modified Asphalt Emulsion Residue (Test 232), 157
Cannon constant stress rheometer (see also Schweyer constant stress rheometer), 143(table)
Concentric cylinder viscometer
use in measuring asphalt viscosity, 32
Constant power viscosity, 145
Contraction strain, 11
Cracking, 1, 40, 52, 96, 119
fatigue, 77
in cold temperatures, 105–107(figs), 112, 115
Creep, 110, 112, 120
Creep response
polymer-modified asphalts, 146, 155–156(fig)
temperature susceptibility, 159
Creep strain, 4, 11, 12(fig), 14
stress-strain relationships, 19, 20(figs)

D
Deflection measurements, 10(fig)
Deformation of asphalt mixtures, 40–41
Deformation of polymer-modified asphalts, 182(fig), 192
tensile strength, 154(fig), 155
Deformation resistance, 44
significance of viscosity, 30
sulfur asphalt binders with fillers, 178
time-dependence neglected, 119
Dekker elastic recovery device, 158
Dilatant, 124, 125(fig), 145
Dropping ball
 tensile strength test, 155
test procedure, 163, 164(table)
Ductility (see also Force ductility)
asphalt cements, 116
polymer-modified asphalts, 148(table), 151(fig), 152(fig), 179
Ductility mold, 181
Ductilometer, to test elastic recovery, 164

Durability, 40–41, 43, 44–47
Dynaflect, 9

E
Elastic layer analysis, 4, 9(fig)
creep testing, 14–15
Elastic recovery, 150, 156, 158, 162
Australian Road Research Board (AARB), 158
Dekker (Elf Aquitaine Asphalt Lab), 159(fig)
test, by means of ductilometer, 164
torsional recovery, 157
Elasticity, 179
Elastoplastic analysis, 84
Elf Aquitaine research labs, So:
laize, France, 155
Elf Mineraloel Laboratories in Ger
many
elastic recovery by ductilometer, 156

F
Falling Weight Deflectometer, 9
Fatigue cracking, 82, 85–88(figs)
Flexible pavement, 119
Force ductility, 151(fig), 152(fig), 182(fig), 185(table), 186(fig)
Force ductility mold, 181
Force ductility test, 192
Fracture (see also Bearing capacities, Deformation, Viscosity), 19, 27
failure energy relationship, 24(fig)
mixture-stiffness relationships, 20–22(figs)
rheological properties of asphalt, 26
tensile strength relationship, 24–25(figs)

Freezing index
optimum, for paving asphalt, 66–68, 74
Frost penetration, maximum depth, 57(map)

H
Hagman’s Torsonial Recovery Test, 157
Heukelom method, stiffness, 109, 115
High-temperature susceptibility (see also Paving asphalt, Temperature susceptibility)
High traffic categories (see Traffic categories)
Heukelom’s version of nomograph, 70(fig)
Hot-mix asphalt concrete, 180
Hydrated lime
filler for sulfur asphalt binders, 167, 168(table), 175(table)

I
Indirect tensile strength, 183, 190(fig)
Indirect tension test, 4, 189, 190(fig)
preparation of specimens, 5
Instron tension tester, 153
Instruments for measuring viscosity, 32

L
Lake Wales test road, 26
Large aggregate (see Asphalt pavements)
Latex content of asphalt emulsions, 157
Limestone fines
filler for sulfur asphalt binder, 167, 168(table), 175(table)
Loading time, sulfur asphalt binders, 170, 171(fig), 172(fig), 173, 174(fig)

Low-temperature binders, 184(table)

Low-temperature characterization, 3, 8(fig)

accuracy of extrapolations, 35

high asphalt viscosity, 25

Low-temperature fracture (see Asphalt pavements, Bearing capacity, Cracking, Pavement life)

Low-temperature pavement performance, 26

Low-temperature testing, 4, 6, 32, 33, 40

Low-temperature transverse pavement cracking, 51, 112, 115, 119

Low-temperature viscosity relationships, 144(fig)

Low traffic categories (see Traffic categories)

Modular ratio, 76

Modulus of stiffness, 54, 71

at maximum service temperatures, 69

nomograph for determining, 72

Moisture resistance

role of rheology, 47

Morphology

of sulfur asphalt filler blends, 176, 177(fig)

Navier-Stokes equation, comparison with non-Newtonian asphalts, 48

Newtonian asphalt, 30–31(figs)
rheological behavior, 122(fig)

Nomograph, paving asphalts
determining modulus of stiffness, 71(fig), 72(fig), 109
relationships between values, 70(fig)

Oxidation, resistance to role of rheology, 47

Oxidation, resistance to role of rheology, 47

Parallel plate viscometer, 48, 49

Pavement cracking, 52, 56, 74

Pavement depth, 61(fig), 62

Pavement design methods, 4, 35, 44, 49

asphalt temperature susceptibility, 52(fig), 53, 58(fig)

freezing index, for paving asphalt selection, 66

Shell method, 77

time-dependent deformation, 119

VESYS system, 76
Pavement life influenced by plastic behavior of asphalt mixtures, 76–77, 97
tests, 100–101
Pavement moduli of stiffness, 69
Pavement performance, 1, 45, 100, 119
elastic layer analysis, 9(fig), 26
in cold climates, 56, 103(table), 104(table), 115
Pavement response, 9, 11, 12
to truck tire pressures, 29
Pavement stability, 51, 74
Pavement surface conditions in Saudi Arabia, 167
Pavement temperature, 52(fig), 74
air freezing indices in North America, 66(fig)
influence of freezing index, 64–65(tables)
using freezing index as measure, 62, 66–68
Paving materials
asphalt, polymer-modified, 74, 146
bituminous mixtures, 119
selecting for binder and layers, 63(fig), 74
temperature susceptibilities, 52–56, 72
Penetration relationship to temperature, 33(fig), 53(fig), 70(fig), 105, 115
Penetration-viscosity, 52, 53(fig), 58–59(figs), 60(fig), 68(fig), 73(fig), 109(table), 160
PVN ductility, of polymer modified asphalts, 148(table)
Plastic behavior, 77, 80(table), 81(fig), 82(table), 83(fig)
average plastic behavior, 79, 96
constant plasticity, 88, 96
multiple layers, 79
relative plastic behavior, 77
Polymer asphalt compatibility, 149
test, 163
Polymer-modified asphalts, 73, 74
performance properties, 160
rheological properties affected, 146, 148(table)
specifications, 161(table)
temperature tests, 149(table), 159
Polymer-modified binders, 149
Portland cement
filler for sulfur asphalt binders, 167, 168(table), 175(table)
Pseudoplastic behavior, 123(fig), 124, 146
PVN (see Penetration, Viscosity, Temperature susceptibilities)

R
Recrystallization (see Sulfur recrystallization)
Relative plastic behavior, 77, 78(fig), 79
average plastic behavior, 97
fatigue stress, 82(fig)
mechano-lattice calculations, 81
rutting, 90(fig), 91, 95(figs), 96
where ratios are controlled, 83
Residual stresses, 83, 97
Resilient modulus of elasticity, 189, 191(fig), 192
Rheology, 4, 19, 32, 33, 49
polymer-modified asphalts, 146–165
properties related to performance, 182, 183
Rheometers—rheological testing, 126, 167
Rheometry, 156–158, 167
Resilient modulus testing, 6, 8(fig), 19
Rubber properties in tension, test, 163
Rutting, 77, 89, 90, 95(figs), 96

Saudi Arabia
asphalt, experimental, 167(table)
pavement surface conditions, 167

Schweyer Constant Stress Rheometer, 26, 126(fig), 127–129(figs), 145
applicability for viscosity testing, 4, 6–7
rheometer data analysis, 139(table), 140(fig)
testing procedures for using, 142
Shear stress and strain, 122(fig), 124(fig), 125(fig)
equations for computing, 129, 131–137
plot, 141(fig)
polymer-modified asphalts, 146, 151, 152(fig), 159(fig)
resistance to, proportional to rate in liquid, 30, 31(figs)
sulfur asphalt filler specimen, 169(fig)
Shear susceptibility, 121(fig), 138(fig)

Shell flexible pavement design, 77
Sliding plate rheometer (see also Rheometry)
for measuring asphalt viscosity, 32
for polymer-modified asphalts, 146
test procedures
sulfur-asphalt binders, 167, 168

Specification
for polymer-modified asphalt cement, 161(table)
Static modulus, 15, 16(figs)

Stiffness modulus of asphalt cement, 110(table), 111(table), 112, 113–114(figs)
Stiffness modulus of sulphur asphalt binders, 167, 171(fig), 173, 174(fig)
with fillers, 175(table)
Stiffness of bitumens
nomogram, van der Poel, 34, 72(fig)

Strain measurements, 10(fig), 11(fig)
stress-strain curves, asphalt viscosity, 20–23(figs)
Stress creep test, 120(fig)
Stress-strain analysis, 84, 182
polymer-modified asphalts, 151
force ductility, stress-strain curves, 152(fig), 153

Structural failure, 44, 45
Styrene-butadiene polymer block copolymers, 180(fig), 183, 192
polymer-modified asphalts, 147

Sulfur asphalt binders, 167
fillers, properties, 168(table)
resistant to deformation, 178
Sulfur recrystallization in sulfur asphalt binders, 176, 177(fig), 178

Temperature-asphalt viscosity effects, 24–25(figs), 35, 53
preconditioning test specimens, 6
test procedures, 5
Temperature susceptibilities
paving asphalt, 52(fig), 55(fig), 72, 74, 115
polymer-modified, 149(table), 159, 160, 162, 180, 183, 184(table)
INDEX 203

Tensile strength, 189
dropping ball test, 155
effect of density on, 25(fig)
load deformation curve, 154(fig)
polymer-modified asphalts, 148(fig), 150, 153, 154(fig)
relative indicator of pavement cracking, 26
Tensile strength test, modifications to ASTM D-412-80, 163
Thermal response modeling, 11, 12(fig), 27
Thixotropic behavior, 127(fig)
Tire pressures
trucks, 28–29, 45, 46
Torsional recovery test (Hagman)
polymer-modified asphalts, 157
Toughness and tenacity
polymer-modified asphalts, 153–155
Traffic categories, 56, 70, 74, 160
Transient stresses, 84(fig)
Transverse pavement cracking, 51, 110, 119

V
Vacuum tube viscometer
van der Poel, nomograph on asphalt rheology, 32–33, 34(fig), 109
VESYS system of pavement design, 76–77
Viscoelasticity, polymer-modified asphalt, 183
Viscometers for measuring viscosity inadequate at pavement stresses, 32
Viscosity, 8, 11, 13, 18–23(figs)
aggregates, 42, 43(figs), 45, 46
constant power, 118
Newtonian asphalts, 26, 27, 31
penetration-viscosity number, 3(fig), 68(fig)
polymer-modified asphalts, 147, 148(table), 157, 158, 160, 161(table), 179
sulfur asphalt binders, 167, 171, 172(fig)
with fillers, 176(table)
Viscosity measurement
different stress levels, 32, 40, 41, 53
low temperatures, 119
test results, application, 143(table)
Schweyer Constant Stress Rheometer, 6, 7, 26, 118
test methods for measuring asphalt cements, 47
Viscosity specifications, 161(table)
Viscosity versus temperature, 185(fig)
complex viscosity [\(\eta^*\)], 187(fig), 188(figs)
effected by temperature
polymer-modified asphalts, 147
sulfur asphalt binders, 173(fig), 178
low-temperature relationships, 144(fig)
temperature curves, 139(fig)

Y
Yield strength (see Bearing capacity)